
NAVAL Pu.fGRADUATE SCHOOL

MONTEREY, CALIFORNIA 93940

/
_NPS52-88-01 1>

NAVAL POSTGRADUATE SCHOOL
Monterey, California

V RULE-BASED MOTTON r.onpnTMATTnN
FOR THE ADAPTIVE SUSPENSION VEHICLE

7̂ Sehung Kwak ,^J!

Robert B. McGhee

May 1988

Approved for public release; distribution is unlimited

Prepared for:
Ohio State University
206 r

„\ 18th Avenue
Columbus, Ohio 43210

FEDDOCS
D 208.14/2
NPS-52-88-011

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Kneale T. Marshall

Superintendent Acting Provost i

\

This report is prepared in conjunction with research sponsored in part by contract from the \

Ohio State University Research Foundation under RF Project No. 716520.

Reproduction of all or part of this report is authorized.

UNCLASSIFIED
?ITY C^ASS -CAT'ON OF S CAGE L0l5-Ct'6C6 VO A3b3iNOl\

TATNlUUHJSdWIIUJHUIWJo <fht

AdVHBIl XONX A31C^REPORT DOCUMENTATION PAGE

EPORT SECURITY ClASSF CA1
UNCLASSIFIED

lb RESTRICTIVE MARKINGS

ECURITY CASS F CATiON AUTl

ECLASSlFlCATlON < DOWNGRADING SCHEDULE

3 D.STRIBUTION AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited.

^FORMING ORGAN;ZA T lON REPORT NUMBER(S)

S52-88-011

5 MONITORING ORGANIZATION REPORT NUMBER(S)

AME OF PERFORMING ORGANIZATION

val Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 52

7a NAME OF MONITORING ORGANIZATION

Prof. Kenneth Waldron, Dept. of Mech

Ohio State University
Eng.

DDRESS (City, State, and ZIP Code)

nterey, CA 93943-5000
7b ADDRESS (City, State, and ZIP Code)

2075 Robinson Laboratory
206 W 18th Avenue
Columbus, Ohio 43210

AME OF FijNDNG SPONSORING .

rganization O" 10 State Univ.

.esearch Foundation

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
RF Project No. 716520

RF Purchase Order No. 496549

DDRESS (City, State, and ZIP Code) 1 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

TLE (Include Security Classification)

(LE-BASED MOTION COORDINATION FOR THE ADAPTIVE SUSPENSION VEHICLE (U)

ERSONAL AUTHOR(S)
Kwak, S. H. and McGhee, R.

TYPE OF REPORT. .

rim Scientific
13b TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

May 1988
15 PAGE COUNT

129

JPPLEMENTAR V NOTATION

COSATi CODES

IELD GROUP SUB-GROUP

18 SJBJECi TERMS (Continue on reverse if necessary and identify by block number)

Robotics, Walking machines, Adaptive Suspension Vehicle,

Robot Motion Planning, Rule-based systems

BSTRACT (Continue on reverse if necessary and identify by block number)

.s study investigates the utility of rule-based coordination of motion for rough-terrain

:omotion by a hexapod walking machine. The logic for generating leg commands is written

Prolog while the simulation of the terrain and of the vehicle kinematics, as well as low

rel on-board computer functions, are written in extended Common Lisp. It is found that

Ls approach results in code that is much easier to understand and modify than previous

;ion coordination programs written in Pascal. The authors believe that both the method-

)gy and the stepping logic presented in this report possess sufficient merit to justify

-1-scale physical testing in the Adaptive Suspension Vehicle operated under DARPA contract

Ohio State University.

HSTRIBUTION/ AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLiMITED SAME AS RPT DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
NAME OF RESPONSIBLE INDIVIDUAL
)bert B. McGhee 22b.xmwv-wi <e Area Code) 22c OFFICE SYMBOL

52Mz

ORM 1473, 84 map 83 APR edition may be used until exhausted

All other editions are obsolete
SECURITY CLASSIFICATION OF THIS PAGE

ft U.S. Government P'inting Office 1986—606-243

UNCLASSIFIED

RULE-BASED MOTION COORDINATION FOR THE
ADAPTIVE SUSPENSION VEHICLE

S. H. Kwak and R. B. McGhee

Naval Postgraduate School

Department of Computer Science (Code 52)

Monterey, CA 93943, U.S.A.

ABSTRACT

This study investigates the utility of rule-based coordination of motion for rough-terrain locomo-

tion by a hexapod walking machine. The logic for generating leg commands is written in Prolog

while the simulation of the terrain and of the vehicle kinematics, as well as low level on-board

computer functions, are written in extended Common Lisp. It is found that this approach results

in code that is much easier to understand and modify than previous motion coordination pro-

grams written in Pascal. The authors believe that both the methodology and the stepping logic

presented in this report possess sufficient merit to justify full-scale physical testing in the Adap-

tive Suspension Vehicle operated under DARPA contract by Ohio State University.

1. Introduction

The Adaptive Suspension Vehicle (ASV) is a large six-legged vehicle designed for outdoor

operation in rough terrain. Limb motion coordination for the ASV is accomplished by an on-

board computer network involving fifteen standard single-board computers as well as two special

purpose computers [l, 2]. The software system is hierarchically organized with a clear distinction

being made between an individual leg control level, a leg motion coordination level, and a body

motion planning level [3]. Except for the two special purpose computers, the application software

for the ASV is currently written almost entirely in Pascal. A custom designed real-time operat-

ing system, written mainly in PL/M, coordinates the functioning of all processes running on the

various processors of the vehicle computer [4]. The total ASV software system involves some-

what more than one million bytes of code.

An important feature of the ASV is its omni-directional motion capability [l, 2] which gives

it the general maneuverability characteristics of a helicopter. This behavior is achieved by pro-

viding the operator with a joystick with three major motion axes for control of vehicle forward

velocity, lateral velocity, and turning velocity respectively [2]. The vehicle control computer

accepts these commands and synthesizes a sequence of leg movements to produce the desired

body behavior. It is assisted in this task by information from an optical terrain scanner which

provides a map of terrain elevation in the immediate vicinity of the vehicle [5], and by force and

position feedback from each leg.

Until now, nearly all outdoor experiments with the ASV have made use of a tripod gait in

which legs are used in two sets of overlapping tripods [6, 7]. This gait was chosen both for its

relative simplicity and because it is known to be uniquely optimal for high speed straight-line

locomotion [7, 8, 9]. However, the tripod gait is not well suited to extreme terrain conditions in

which a significant fraction of the area under a given leg of the ASV may be unsatisfactory for

load bearing due to the presence of rocks, holes, obstacles, soft soils, etc. In the latter case, simu-

lation experiments [10, 11], and initial indoor testing [12], indicate that on-line optimization of

leg sequencing should give better results.

Gaits involving real-time optimization of stability or maneuverability in the presence of ter-

rain constraints are often called free gaits to distinguish them from the periodic gaits used by

walking machines and animals in less difficult circumstances [13, 14]. Until now, all ASV experi-

ments with free gaits have used an imperative language (Pascal) to encode stepping algorithms.

However, because of the logical complexity of free gaits, the use of such a language produces code

which is very difficult to understand or to change [15]. As a consequence, one of the authors

adopted functional programming as implemented in Common Lisp for a simulation study of free

gait algorithms [11]. While this was found to be helpful, and resulted in substantially more com-

pact code, Common Lisp does not provide support for either object-oriented programming or

logic programming [16]. Since optimization of stepping requires simulation of vehicle behavior,

the use of object-oriented programming ought to produce more readable code. Fortunately,

extended Common Lisp as implemented on Lisp machines possesses an object-oriented facility

called Flavors [17]. As part of the work described in this report, the program documented in [11]

was recoded using Flavors. The result, attached as an appendix, is believed by the authors to be

much easier to comprehend and modify than the corresponding code of [11].

Although the use of Flavors represents a significant improvement in modularization and ease

of understanding, the top level of leg motion planning is still difficult to comprehend. Further

study has led the authors to the conclusion that this part of the ASV control problem fits a logic

programming paradigm better than any other. That is, the logical conditions for transitions

between various leg control states are best described by a set of rules [9, 18, 19]. This being the

case, Prolog [20] was adopted for coding the top level of the coordination algorithm developed in

this report. The resulting code is at least an order of magnitude shorter than the corresponding

Pascal code, and is remarkably easier to understand and modify.

The remainder of this report presents first a discussion of the mathematical model used in

this study to simulate terrain and the ASV vehicle. This is followed by a description of the use of

finite state machines for control of individual legs [18, 19]. Both these controllers and the vehicle

and terrain models are simulated by the Lisp programs presented in the appendix. The next

topic discussed is the use of Prolog to realize the free gait coordination algorithm. The report

concludes with a discussion of the results of this investigation and suggestions for future research.

2. Vehicle and Terrain Model

While the vehicle model used in this study is based on the Adaptive Suspension Vehicle, it

represents only the major vehicle dimensions and components. Specifically, the cabin and the ter-

rain scanner are omitted from the simulation model, while the geometries of the body and the

legs are identical to those of the ASV. Therefore, the simulation model is represented by a simple

six-faced box with each leg drawn as two line segments as shown in Figure 1. The exact vehicle

dimensional data can be found in other literature [2, 12].

The terrain adopted for this study consists of two types of cells. One type, called a permitted

cell, is able to support the body load when a leg steps on it. The other type, named a forbidden

cell, is not usable because of unfavorable terrain conditions. A typical terrain example utilized in

this study is shown in Figure 1. A cell with an "x" mark is a forbidden cell while unmarked cells

are permitted. As shown in Figure 1, the simulation terrain model is prismatic in nature. That

is, the terrain height is determined by a function whose value is governed only by distance along

a specified horizontal direction on the terrain. Forbidden cells on this terrain can be designated

either manually by an operator or automatically by using a random number generator with a

threshold chosen to produce a specified ratio between permitted cells and forbidden cells [11].

The dimensions of each cell are one foot by one foot when projected onto a horizontal plane. This

size is comparable to that of the feet of the ASV, and is larger than the resolution of the terrain

scanner [5, 12].

An overall block diagram of the program developed in this study is shown in Figure 2. This

entire program is executed on a Symbolics 3650 Lisp machine [11, 21]. Each box shows an object

that is an instance of a Flavor [17] with the exception of the Free Gait Coordinator which is writ-

ten in Symbolics Prolog [21]. Like the physical ASV which has nine major parts, namely, body,

vision sensor, cab, and six legs, the simulation object, "ASV" has correspondingly nine com-

ponent objects, "Body", "Vision Sensor", "Joystick", and "Legl" through "Leg6". These nine

objects are linked to "ASV" through a part relation [22]. Each part has its sub-parts, and again

links to them with a part relation. Differing from the nine major parts which have visible

corresponding parts in the real ASV, the subparts of the simulation are not physically tangible,

but are introduced because of their functionality for program development. For example, the

"Legl" object, which is a part of the "ASV" object, has six subparts : "Legl Plan Machine",

"Legl Control Machine", "Legl Executor", "Legl Contact Sensor", "Legl Foothold Finder", and

"Legl TKM Calculator". The "Legl" object binds all of these subparts into one group with the

part relation. In order to show the above relations among the objects in Figure 2, the six subpart

objects are drawn under the "Legl" object.

Besides the part relation, Figure 2 also shows the hierarchical control structure linking the

simulation objects. Specifically, communication is restricted between objects in two adjacent lev-

els by an assumption that upper levels have the right to access status information at lower levels,

but the latter must receive explicit commands from upper levels to update their internal state.

For example, when "ASV", the vehicle object, needs "Legl" to support its body, it sends a

"Place" decision to "Legl" and continuously monitors "Legl" as to whether "Legl" has started

to support the body or is in motion to try to reach a foothold. On receiving a "Place" decision

from "ASV", "Legl" sends the "Place" decision to "Legl Plan Machine" while making observa-

tions of this machine. This type of message passing to and status observation from subordinates

continues until the "Place" decision is accomplished. That is, when the foot of "Legl" actually

hits the ground, the contact sensor of "Legl" detects the event and changes its internal state.

The state change of "Legl Contact Sensor" is observed by "Legl Executor" and by "Legl Con-

trol Machine". In this way, the state change in the lowest level is propagated to higher levels

until the touch down event arrives at "ASV ".

The joystick object simulates the physical three-axis joystick of the ASV through the use of

six keys on the simulation computer keyboard to increment or decrement each of the three rates

controlled by the joystick. These rates are forward velocity, lateral velocity, and turn rate, all in

body coordinates. The altitude of the vehicle above the terrain and its orientation in roll and

pitch relative to the terrain are automatically regulated using the algorithms described in [23].

While an elementary representation of the vision sensor is included in the appendix, it is not

used in this study. Rather, as described in the above discussion of terrain, it is assumed that all

forbidden cells have already been identified by prior terrain analysis. Of course this assumption

does not represent a physical limitation of the ASV, but as made merely to allow this simulation

to be focused on control of stepping, rather than on vision.

In addition to simplification of vision, this simulation also ignores leg mass in order to avoid

the complexity of computing a center of gravity which moves with respect to the body. More-

over, all inertial forces are omitted from the simulation. That is, as in most previous simulation

studies relating to gaits and control of stepping [8, 9, 10, 11, 24, 25, 26], only static stability is

considered in this study. While this simplification would be serious in high speed locomotion, free

gaits are most appropriate to low speed traversal of extremely difficult terrain, so the authors do

not feel that this is a serious limitation on the applicability of the results of this investigation.

3. Finite State Control of Individual Legs

The basic approach to leg control used in this research was first proposed by Tomovic and

McGhee [27], and involves the subdivision of leg motion into a number of discrete states [9, 18,

19]. In order to describe the application of this concept to the ASV, a number of definitions are

needed as follows:

Definition 1: A foothold is a point on a piece of terrain, and can be assigned to a leg while the leg

is in the air. When the foot of a leg is placed on the terrain, its assigned foothold becomes the

support point of the leg. A foothold associated with a leg can be changed to a new one before the

foothold becomes a support point [10].

Definition 2: The support pattern associated with a given set of leg support points is the convex

hull of any point set in a horizontal plane which contains the vertical projections of all support

points [13].

Definition 3: The magnitude of the stability margin at time t for an arbitrary support pattern is

equal to the shortest distance from the vertical projection of the vehicle center of gravity to any

point on the boundary of the support pattern. If the pattern is statically stable, the stability

margin is positive. Otherwise, it is not defined [15].

Definition 4: A working volume is associated with each leg. This volume is a subset of three-

dimensional space defined relative to the body and consists of the collection of points which can

be reached by the foot of the given leg [11, 24].

Definition 5: A temporal kinematic margin is associated with each foothold. At any instant, this

margin is the time remaining until the associated leg would reach the boundary of its working

volume if the foothold were used as a support point [15, 24].

Evidently, supporting legs have their support points, and these points define a support pattern.

The static stability of a walking machine is determined by the location of the center of gravity of

its body with respect to the support pattern. The walking machine can change its body position

only while the temporal kinematic margins of all supporting legs are larger than zero and the sta-

bility margin of the walking machine is positive. Therefore, the mobility of the walking machine

is limited when either its stability is small or the temporal kinematic margin of any leg is small.

This problem can be corrected by changing the support pattern or by changing the center of grav-

ity of the machine; i.e., by leg placing and lifting or by body movement. The work presented in

this report adopts both correction methods to enhance the mobility of a walking machine.

Because of the unevenness and obstacles associated with rough terrain, in this study leg

movements during placing and lifting are restricted to be parallel to the direction of gravity in

order to eliminate the possibility of striking obstacles with the side of the leg. From this con-

sideration, the trajectory shown in Figure 3 is used for the free gaits discussed in this report. The

seven segments of this trajectory define the states of the "Leg Control Machine" shown in Figure

4. Among these seven states, three states, "Ready", "Descent", and "Support" are asynchronous

while the remaining four states, "Advance", "Contact", "Lift", and "Return" are synchronous.

Among the three asynchronous states, two states, "Ready" and "Support", are introduced to

handle the variable timing of lifting and placing events necessarily associated with free gaits.

These two states are terminated by explicit commands from a higher level state machine, called

the "Leg Plan Machine", shown in Figure 5. On the other hand, the "Descent" state of Figure 4

is designated as an asynchronous state for the reason that the time required for leg contact with

the ground can be expected to deviate slightly from a nominal value, assumed to be 0.4 seconds,

because of inaccuracies in measurement or mechanical errors in leg movement.

In the other four states, "Advance", "Contact", "Lift", and "Return", the accuracy of leg

movement along the leg trajectory is not so critical as it is in the "Descent" state, so slight

position errors are acceptable. Thus, these four states are realized as synchronous states. More-

over, leg movement control based on only a timing event simplifies the control scheme. The

quantities Tl, T2, T3, and T4 shown in Figure 4 are the time duration of the four synchronous

states, and represent reasonable amounts of time for the physical ASV leg to finish the associated

movements.

As shown in Figures 4 and 5, the plan machines can send either a "Deploy command" or a

"Recover_command" to their subordinate leg control machines and monitor state changes of the

latter. On the other hand, as shown in Figure 2, the plan machines are controlled and monitored

by the leg objects. Thus, the role of the plan machines in the control hierarchy is to buffer the

decisions of the free gait coordinator to allow for delays between leg motion planning and leg

motion execution. Specifically, there is a time difference of one second between the leg motion

planning done by the coordinator and the leg motion execution done by the leg executor under

the control of the leg control machine. This is necessary because restoration of vehicle stability

by placing a leg on the ground cannot be accomplished until a designated leg has moved to a

designated foothold and physically begins to support the body. This prediction time represents

the nominal time needed by a leg for such an action. Though leg sequencing could be planned a

longer time ahead, this would require more computation and also would be subject to greater

inaccuracy because of errors in predicting commands from the operator. Specifically, in this

study, predicted body motion is derived from an assumption that the desired input commanded

by an operator will not change within the next second. To make this assumption more reason-

able, operator commands are filtered with a low pass filter before they are used by the program.

This action also represents a simple approximation to the physical effect of ASV body inertia,

since it prevents step changes in vehicle velocity.

Because the "Leg Plan Machine" is a Moore machine, as shown in Figure 5, labels on arcs

from state to state are transition conditions, while arrows not terminating on states represent

9

outputs. The two outputs, "Deploycommand" and "Recover_command", are generated from

the "Planned contact" and "Actual lift" states respectively, and are given to the lower level con-

trol machine. After sending out the "Deploy_command", the "Leg Plan Machine" continuously

monitors the state change of its subordinate control machine. When the leg physically touches

the ground, the control machine makes a state transition to the "Contact" state. The leg plan

machine detects the control state transition, and makes its state transition to the "Eligible to

lift" state. If the "Descent" control state lasts 0.4 seconds as planned by the control machine,

then since the synchronous state "Advance" lasts 0.6 seconds, the "Planned contact" state of the

plan machine lasts one second. Thus, the one second projection time is spent while the plan

machine waits in the "Planned contact" state, and the plan machine is thereby synchronized with

the physical touch-down event.

The "Eligible to lift" state means that the leg associated with the plan machine is ready to

be lifted from the ground. The plan state transition to the "Eligible to lift" state is monitored

through the leg object, and the information is collected by "ASV" so that it can provide the coor-

dinator with the information that the leg is liftable from the ground. Thus, such a leg can be

removed from the projected support pattern whenever the coordinator decides to do. Such a

removal can occur in two different ways. One way is simple leg lifting. Whenever a leg is found

to be redundant to making the vehicle stable, the coordinator can cause that leg to be lifted from

the ground. The other possibility is that when the coordinator removes a given leg, it adds

another leg into the projected support pattern. The latter case is called "leg exchange", and is

intended to improve the mobility of the vehicle at the cost of a small increase in the complexity

of the plan machines. Specifically, this action is useful when three legs are in a support pattern,

but one leg is almost at its kinematic limit. In such a situation, the leg near its kinematic limit

cannot be simply deleted from the support pattern because the vehicle would be unstable. On the

other hand, without lifting the leg from the ground, the vehicle would soon come to stop because

10

of the leg reaching its kinematic limit. One way to solve this problem is to use two legs instead of

one leg. That is, to cause one leg selected from the legs available to the coordinator to support

the body, and at the same time to cause the other leg near its kinematic limit to be lifted from

the ground. These two actions are performed simultaneously inside the coordinator, but two dis-

tinct decisions are sent to corresponding plan machines. First, the "Exchange_decision" is sent

to the plan machine of the leg to be lifted so that the plan state is changed to "Planned

exchange". Second, the "Placedecision" is given to the plan machine of the other leg to be

placed so that the plan state is changed to "Planned contact". This action causes generation of a

"Deploy_command" which is sent to the control machine so that the physical leg starts to move

and eventually supports the body. The former leg plan machine will wait until it receives from

its leg object the "Interlock_confirm" signal that is generated by the "ASV" when the physical

leg moving toward the designated supporting point actually touches down on the ground. After

arrival of the confirm signal, the plan machine changes its state to the "Actual lift" state, gen-

erates a "Recover_command", and sends the command to the lower level control machine. On

receiving the command, the control machine changes its state to the "Lift" state, and passes its

state to the lower level leg executor causing it to perform a physical leg lifting action.

Besides the "Interlock confirm" signal, the "Support_state" signal from the control machine

of the leg is also tested before the above state transition of the plan machine is made since a leg

can be lifted from the ground only when its control state is the "Support" state. The last test in

the plan state transitions is "Stable_without" which examines vehicle stability resulting from the

leg lifting action. Since it is performed one second in advance, this test eliminates the possibility

that the vehicle could become momentarily unstable because of lifting a leg.

Referring to Figure 5, the "Actual lift" state of the plan machine can be entered either from

the "Planned exchange" state or from the "Planned lift" state. The first case is discussed above.

For the latter state transition, two conditions are tested. One is whether the leg planned to be

11

lifted from the ground is in the "Support" control state, and the other is whether the leg can be

lifted without making the vehicle unstable. The first test ensures a correct control state transition

to the "Lift" control state. The second test takes care of the time difference between the leg lift-

ing decision from the coordinator and the physical leg lifting action.

4. Leg Coordination Logic

The free gait coordinator located at the top of the control hierarchy continuously monitors

the internal status of the robot object "ASV", and sends to it various commands to control the

body and legs. In carrying out this action, the coordinator uses a free gait strategy which tends to

maximize the number of legs in the air so long as the robot object is stable. This is done to

increase the likelihood that the coordinator can find new legs to support its body when the robot

mobility is limited either because of a small stability margin of its body, or because of a small

temporal kinematic margin of one of the supporting legs. Thus, the role of the coordinator is

similar to that of the brain of a horse carrying a human on its back when it walks over rough ter-

rain. Like a horse that resists or modifies commands from a human operator under difficult con-

ditions, the coordinator makes the robot object resist or modify operator commands depending on

leg states, body attitude, and terrain conditions. Specifically, when one of the vehicle supporting

legs has a small temporal kinematic margin, the coordinator resists the vehicle speed command

from a human operator by reducing the vehicle speed in order to provide more time for leg

recovery. After the leg with a small temporal kinematic margin is lifted from the ground, the

coordinator then accelerates the vehicle until its speed reaches the desired value. The coordinator

also modifies directional commands by perturbing the vehicle trajectory in a lateral direction to

try to provide a larger stability margin when necessary.

The free gait coordinator is written in Symbolics Prolog and is listed in Figure 6. This pro-

12

gram is composed of three functional groups of predicates. The first group controls the flow of

the whole program, while the second generates commands for the vehicle body and legs. The last

group is responsible for bridging between the program written in Prolog and the program in Fla-

vors. This is accomplished through the LISP function call facility provided by Symbolics Prolog.

Specifically, anything following the "is" predicate in a Prolog clause may be either a Prolog arith-

metic function or the name of a LISP function [21]. If a LISP function name follows the "is"

predicate, it is evaluated according to its definition inside the LISP environment. In the program

of Figure 6, all the names following the "is" predicates are names of LISP functions, and make

connections to the LISP environment. A returned value resulting from a LISP function call may

be used to instantiate a variable preceding the "is" Prolog predicate or to test whether the

returned value matches a value preceding the "is" predicate. In the former case, the subgoal "is"

always succeeds, but in the latter case, only when two values agree does the "is" subgoal succeed.

For example, in Figure 6, the second clause, "initialize", has an "is" subgoal in its right side

expression. The "is" predicate is followed by a LISP function "inits", and the "inits" function is

evaluated inside the LISP environment. A returned value from the result of the function call is

used to instantiate the dummy variable "X" without further usage, and the subgoal "initialize" is

simply realized when the "inits" LISP function internally initiates a series of processes.

Specifically, when the "inits" function is called, all the internal component objects of the robot

object, "ASV", are instantiated from the Flavor definitions to complete the robot object. In this

process, an empty "ASV", which exists before the "inits" LISP function is called, starts to fill its

component slots with the body and six leg objects first, and then the body and the six legs fill

their empty slots with sub-objects. This process continues until an object is reached which does

not lack any sub-object necessary to fill its internal slots, such as the "Contact-Sensor" object in

Figure 2. Thus, the "initialize" clause makes the robot object, "ASV", functionally complete to

be used by the free gait coordinator.

13

The top level predicate of Figure 6, "robot", belongs to the first group of clauses, and pro-

vides the overall program control flow; i.e., it initializes the program and forms a loop for con-

tinuous program execution when the "robot" goal is typed from a terminal. The program loop is

formed both by the built-in predicate "repeat" which provides a way to generate multiple solu-

tions through backtracking, that is, by making the goal "repeat" always succeed on backtracking,

and by the built-in predicate, "fail", which initiates backtracking whenever it is tested. There-

fore, the "loop" subgoal is executed again and again. The "loop" subgoal is responsible for

another level of control flow of the program so that the Prolog program repeats a series of opera-

tions, "get_command", "plan", and "execute"; i.e., it gets a desired velocity command from a

human operator, plans vehicle motion based on the input command, and executes the planned

vehicle motion. The "get_command" clause and the "execute" clause directly call their

corresponding LISP functions, but the "plan" clause is refined into several subordinate Prolog

clauses including "leg_plan" and "body_plan". The clauses or rules related to the plan predicate

eventually communicate with the LISP environment to input states of the robot object, "ASV",

and to output results from the planning process of the coordinator. Therefore, the data stored in

the LISP robot object, "ASV", influences execution of the Prolog program, while the Prolog pro-

gram modifys the data inside "ASV" using results from its execution. Thus, the whole plan por-

tion of the free gait coordinator acts like a rule-based system being composed of three parts: infer-

ence engine, rules, and fact base. The plan clauses in Prolog and the status of the robot object,

"ASV", in LISP, respectively, correspond to the rules and the fact base. The Prolog default

search strategy corresponds to the inference engine, which searches its rules using a depth-first

method until it finds a proper rule to fire. Therefore, in the Prolog program, the positions of Pro-

log clauses are interpreted as a priority preference among them. For example, the "leg_plan"

portion consists of five "leg_plan" rules, and these rules are linearly ordered to express a free gait

strategy that attempts to maximize the number of legs in the air. Thus, among the five rules,

14

the "lift a leg" rule is written first. The second "leg_plan" rule contains the second most favor-

able way to use legs. When this rule succeeds, the number of legs in the air is not changed, but

the vehicle improves its mobility by exchanging a supporting leg that limits its movement for a

leg in the air. The next most favorable method is to do nothing as long as the vehicle maintains

its stability. This idea is written in the third "leg_plan" rule. The fourth way for "leg plan" to

succeed is to place a leg on the ground to maintain stability, although the number of legs in the

air is reduced by this action. The last "legplan" rule represents the least favorable action since

it both decreases the number of legs in the air and slows down the vehicle.

The top level "plan" clause makes the robot object, "ASV", follow a sequence of operations.

First, it orders "ASV" to update its internal states. On receiving the "update_robot_state" com-

mand, "ASV" calculates the next body position based on the operator commands, and checks and

collects internal state information for the coordinator, such as which legs are available to the

coordinator. After completion of the updating process, the coordinator checks whether any leg is

near its kinematic limit. If such a leg is found, the coordinator simply removes it from its sup-

port pattern, and designates the leg as a limit leg so that the "leg_plan" rules can provide a

proper action to correct the leg limiting situation. In normal circumstances, the above mentioned

leg is seldom found because, before a leg approaches its kinematic limit, the leg is lifted from the

ground by the "leg plan" rules that always try to minimize the number of supporting legs. How-

ever, sometimes this process is necessary when the vehicle directional command is abruptly

changed or when the vehicle speed is too great. In the latter case, the legs on the ground quickly

approach their temporal kinematic limit before the legs lifted from the ground are available to

the coordinator. Therefore, the limit leg may be found either because of a planning error caused

by an abrupt command change or because of temporal problems of lifted legs. After executing

the "check_tkm_limit" clauses, the coordinator tests the first "leg_plan" rule, "lift_a_leg". In

the "lift_a_leg" rule, the coordinator checks the vehicle stability first. If the vehicle is stable, it

15

selects the leg with the smallest temporal kinematic margin among the supporting legs because

such a leg will be the next to limit the vehicle mobility. Thus, the "lift_a_leg" rule asks "ASV"

whether there exists a leg with a smallest temporal kinematic margin by calling the LISP func-

tion, "smallest_tkm_leg", and obtains the leg information through a returned value from the

LISP function call. The leg information obtained is stored in the local variable, "Aleg", and is

used to determine if "Aleg" can be removed from the support pattern without causing static ins-

tability. If the vehicle is still stable without the leg, the coordinator causes this leg to be lifted

from the ground by asserting a "lift" decision that will be used later by the "generate_decision"

predicate to send out the decision to the "ASV". Therefore, when this rule succeeds, the number

of legs in the air is increased. The second most favorable rule is "exchange_legs" which improves

the mobility of the vehicle without affecting the number of legs in the air. This rule trys to

exchange a leg, "LegA", which has the smallest temporal kinematic margin among the supporting

legs for a leg, "LegB", which will provide the largest stability margin when the leg is added to the

set of supporting legs. In this case, the stability margin associated with a leg is defined as the

stability margin which results when the leg is placed on the terrain without changing legs in the

support pattern except for excluding "LegA". Because "LegB" is selected based on the stability

criterion, if it is placed, then the stability of the vehicle tends to be maximized by this action.

However, this maximization is somewhat limited because at most three legs can be compared to

find "LegB", and the designated foothold for each of these legs has been selected from footholds

inside its working volume using the criterion of temporal kinematic margin. If "LegB" is found,

then the "exchange_legs" rule does another test to determine whether the temporal kinematic

margin of "LegB" is larger than that of "LegA" because, if "LegB" has a smaller temporal

kinematic margin than that of "LegA", replacing "LegA" with "LegB" would cause the kinematic

problem to become more serious rather than improved. If the above test succeeds, then a leg

exchange is performed. Consequently, the mobility of the vehicle is improved without changing

16

the number of legs in the air.

The third most favorable "leg_plan" is doing nothing as long as the vehicle is stable, because

without changing the number of legs in the air the vehicle can still move while following the

desired vehicle commands. However, when this rule succeeds, the vehicle mobility is not

improved. The fourth rule can succeed only if the stability test of the preceding rule fails. Since

the planner runs one second in advance, this means that the vehicle is about to become unstable.

In this case, the coordinator selects one leg from the available legs and causes it to support the

body to restore stability. Though this action decreases the number of legs in the air, it is neces-

sary to maintain the vehicle stability. When selecting such a leg, the coordinator tries to choose

the leg which will give the largest stability margin among the available legs. Again, the vehicle

stability is maximized in a limited sense. However, this attempt may or may not be successful,

either because no leg available to the coordinator generates a sufficient stability margin if it were

to be used to support the body, or because no legs are yet available to the coordinator. If a proper

leg is found, it is commanded to support the body and the number of legs in the air is decreased.

Therefore, this rule is least favorable to the coordinator among the above four "leg_plan" rules,

but is necessary to maintain the vehicle stability.

The last "leg_plan" rule is "wait for legs", which both sacrifices the mobility of the vehicle

and decreases the number of legs in the air. The first sub-rule is "try_new_foothold" which con-

tinuously assigns new footholds to the legs available to the coordinator until the coordinator finds

a leg able to make the vehicle stable. This process tends to reduce the future mobility of the

vehicle because the newly assigned foothold has a smaller temporal kinematic margin than that of

the initially assigned foothold. To minimize the seriousness of this effect, new footholds are

assigned in the order of their temporal kinematic margin. Therefore, when a foothold is found

which can make the vehicle stable, it may have a larger temporal kinematic margin than the

smallest temporal kinematic margin that the leg can provide, but it has a smaller temporal

17

kinematic margin than that provided by the initially assigned foothold.

The next sub-rule performs the "recovery" action. The central idea of this action is to help

the "place a leg" and "try_new_foothold" rules so that they can find a suitable leg in the next

control cycle. Because the leg placement rules handle one leg during each control cycle, some-

times the rules cannot find a suitable leg to solve a mobility problem of the vehicle, but by using

two or three legs the problem could be solved. Instead of increasing the complexity of the

"leg plan" rules so that they can handle two or three legs in one control cycle, the problem is

solved through multiple control cycles by introducing the "recovery" rule, while concurrently the

speed of the vehicle is reduced in order to preserve its current stability. While simple, this

approach is not guaranteed to find an ideal solution that could be obtained from generalized rules

capable of handling multiple leg placements. When the "recovery" rule is tried, no single leg is

able to make the vehicle stable using the previous rules. In this case, all the legs available to the

coordinator are identically useless. Thus, any one leg can be arbitrarily chosen and made to sup-

port the vehicle body. This action causes the vehicle to have a new support pattern, and

increases the chance that the coordinator can find an additional leg that makes the vehicle stable

in the next control cycle. If such a leg is found in the next cycle, a two leg placement solution is

found through two consecutive cycles the "leg_plan" rules. If an adequate leg is not found again,

then the above process will be repeated once more with the result that all the available legs are

consumed by the "recovery" rule, since at most three legs can be in the air at any given time.

The last sub-rule of "wait_for_legs" simply slows down the vehicle, and if a limit leg is found

in the "check_tkm_limit" rules, then this rule restores the leg to the support pattern because the

previous "leg_plan" rules could not make the vehicle stable without the limit leg. Moreover, the

temporal kinematic margin of this leg will be increased because the vehicle speed is reduced by

this rule. Specifically, if the limit leg information is asserted by the "check_tkm_limit" rules, this

information is retracted from the Prolog data base by this rule so that the limit leg is not lifted

18

from the ground.

The next step in the "plan" rule is "body_plan" which is composed of two sub-goals. The

first one is "speed plan" which checks whether a vehicle speed reduction is requested from the

"leg_plan" rules. If requested, it retracts the request and makes the vehicle slow down. If not, it

makes the vehicle speed up to follow a desired speed command. The second sub-goal,

"trajectory_plan", helps to increase the stability margin of the vehicle. Because the stability

margin is omni- directional, there exists one shortest line segment between the center of the body

and the boundary of the support pattern. The main idea of the "trajectory-plan" predicate is to

increase the length of this line segment. The method adopted here is to push the center of the

body away from the boundary of the supporting pattern in the direction parallel to the shortest

line segment until the stability margin is larger than a specified desired value used for the stabil-

ity test in the "leg_plan" rules. In order to implement the above idea, a "recovery vector" is

defined such that it points away from the boundary of the supporting pattern along the line seg-

ment that determines the stability margin at that moment. The magnitude of the vector is pro-

portional to the reciprocal of the stability margin. The recovery vector is internally interpreted

as a recovery velocity, and is superimposed on the operator velocity command so that the vehicle

is pushed away from the boundary. More precisely, only the component of the recovery vector

perpendicular to the velocity command is used in order to eliminate a speed disturbance in the

direction commanded by an operator during such a push operation.

After planning leg and body motions, the coordinator sends decisions to the robot object,

"ASV", one by one, until all the decisions in the Prolog data base are exhausted. Specifically, two

activities, a decision retraction from the Prolog data base and the decision dispatch to "ASV",

are repeated by the "fail" predicate at the end of the "generate_decision" clause until all the deci-

sions are popped from the Prolog data base. When all the decisions are thus removed from the

data base, the second "generate decision" clause is tested to determine whether or not a limit leg

19

exists in the data base. If this is true, then the second clause deletes the limit leg from the data

base and sends a lift decision to the robot object, "ASV".

In the execution process, the coordinator instructs "ASV" to execute the decisions given to it

in the planning process. The six leg plan machines, the six leg control machines, the six leg exe-

cutors, and the six contact sensors start functioning according to the hierarchy shown in Figure 2.

The decisions from the coordinator cause state transitions of the six leg plan machines, and the

state machines send commands to their subordinate control machines so that the control

machines can update their control states. The control machines instruct their leg executors to

move their legs depending on the control states and monitor states of their contact sensors to

check leg touch-down events. Finally, the coordinator calls the "graphical_display" LISP func-

tion to draw an updated robot image on the screen of the simulation computer. Thereby one con-

trol cycle is completed. This action continues until the operator interrupts the program.

5. Discussion

The gait selection problem for a walking machine is inherently an ill-defined problem [28]

because neither the goal state, nor the rules (or operators) available for reducing the state

difference to reach the goal state are clearly specified. Instead, two general minimality criteria

are known: stability margin and temporal kinematic margin. Thus, it is necessary to add more

structure to this problem using constraints in order to make it more manageable. A frequently

used constraint is to make a walking machine use a periodic leg stepping sequence, follow a

straight-line trajectory, and walk on flat level terrain free from prohibited stepping areas. Using

this constraint, a family of well understood optimal gaits, called wave gaits is found [7, 9]. How-

ever, for more general applications of walking machines, such as locomotion on rough terrain

along an arbitrary trajectory, this constraint is too restrictive. Rather, it should be either relaxed

or eliminated. If the constraint is removed, free gaits result. Thus, free gaits include all possible

periodic gaits. In the specific free gait implementation of this study, instead of limiting the

20

stepping sequence and body trajectory, an overall strategy is added to structure the gait problem;

namely, to minimize the number of supporting legs to the greatest extent possible.

Differing from a tripod gait that exists as a closed-form solution, free gaits are generated by

on-line optimization depending on the situation currently confronted by a walking machine.

Therefore, the first performance measure of any free gait coordination algorithm is whether it

reduces to a tripod gait in situations where this gait is known to be optimal. From the computer

simulation, it is observed that the gait generated by the coordination algorithm when it drives

the ASV along a straight line on a flat level terrain containing no obstacles is essentially a tripod

gait. Moreover, when a small number of obstacles are added to the terrain, the program still uses

tripod-like gaits. However, as the percentage of forbidden cells on the terrain is increased, as

would be expected, the gaits generated by the program change.

Perhaps the most distinctive departure of leg stepping from tripod gaits is observed when the

ASV makes a turn-in-place motion. Ideally, during this motion, the middle legs should show less

frequent leg movements compared with those of the front and the rear legs. Evidently, tripod

gaits cannot exhibit such leg motions since the middle legs are cycled at the same rate as the

front and rear legs. The free gaits generated by the program clearly show the expected behavior.

Specifically, during a turning-in-place motion of 90 degrees or more, the middle legs are not usu-

ally changed during several motion cycles of the front and back legs.

To obtain an objective performance evaluation, the model vehicle was made to walk over ter-

rain containing randomly generated obstacles while following a standard trajectory. Along this

trajectory, three types of motion are sequentially performed. First of all, after the vehicle is ini-

tialized, it moves in the forward direction. It then makes a 90 degree turn-in-place at the middle

of the terrain in the counter-clockwise direction, and finally performs side stepping until it

reaches the edge of the model terrain [11]. For these three trajectory segments, the vehicle is

sequentially commanded with three different velocity inputs: a one foot per second velocity input

21

in the forward direction, a one-twentieth radian per second turning velocity input, and a half foot

per second side-stepping velocity input in the right side direction. A typical terrain example is

shown in Figure 1. In this example, eighty percent of the area is classified as permitted cells.

Performance tests were based on trials on 10 different terrains with the same probability of

occurrence of permitted cells. The general tendency of the results obtained in this evaluation is

as would be expected; namely, the larger the probability of permitted cells, the better the chance

that a vehicle can cross the randomly generated terrain. No failures to complete the standard

trajectory were observed for any terrain in which permitted cells occupied 60 percent or more of

the area of the whole simulation terrain. For terrain with 50 percent, 40 percent, and 30 percent

permitted cells, the tests showed 8, 9, and 8 successes out of ten trials respectively. However, the

success rate was sharply reduced for terrain containing less than 20 percent permitted cells, and

no successful motion was observed when 10 percent or less of the total terrain cells was permit-

ted. Therefore, practically, when more than 30 percent of the total terrain cells are permitted,

the program makes the ASV maneuver without great difficulty. The average time spent to run

one test with a Symbolics 3675 Lisp Machine is about 15 minutes, almost 10 times slower than

the simulation time on which all the internal calculations are based.

One of the advantages of rule-based control of stepping is the ease of modification of stepping

logic resulting from the fact that each rule defines a small, relatively independent piece of

behavior. To demonstrate this advantage, two alternative rule sets were compared to the origi-

nal rule set. In the first experiment, the "exchange_legs" rule was removed from the "legplan"

rules because this rule was suspected of being redundant. When this is done, the "lift_a_leg" rule

and the "place_a_leg" rule implicitly share leg exchange responsibility. However, it was found

that the performance of the new rule configuration is poorer than that of the complete rules.

More frequent planning failure is observed on randomly generated complicated terrain. Gaits

generated by the new rules set are not so close to tripod gaits as those generated by the complete

22

rules, although during a turn-in-place motion the new rule set also clearly treats the middle legs

differently from the other four legs. Therefore, it can be concluded that the "exchange_legs" rule

improves performance. This rule provides a shortcut of the logical process and works somewhat

like compiled knowledge in a human or animal brain obtained from experience.

If the "lift_a_leg" rule is also removed from the "leg_plan" rules, the coordinator instructs

the ASV to use as many legs as possible to support its body. Thus, the resulting leg stepping

strategy has almost an opposite meaning compared to the original one. As would be expected,

the gaits generated by the rules without these two leg plan rules have little resemblance to tripod

gaits, even on flat level terrain. The overall performance of the simplest rule set on rough terrain

is much better than that of the former simplified rule set, but slightly inferior to that of the origi-

nal rules. It frequently slows down the vehicle, but the terrain adaptability to rough terrain is

almost the same as that of the original rule set.

The overall conclusion from simulator tests to date is that the original rule set is a good one.

Specifically, when the ASV is presented with with easy terrain and essentially forward motion, a

tripod gait is produced by the free gait coordinator. On the other hand, for turning in place or

moving over terrain with few available footholds, the free gait algorithm seems to make "intelli-

gent" decisions and displays a remarkable ability to pick its way through regions with sparse

footholds. Attempts to simplify the rule set presented have so far resulted in deterioration of

their behavior.

23

6. Summary and Recommendations

The main purpose of this study was to demonstrate the value of a multiple paradigm pro-

gramming environment in the development of software for coordination of motion for the ASV

walking machine. An important secondary goal was using such a facility to better explain the

algorithm developed in [11], and to investigate the effect of changes in its basic strategy. With

respect to the first objective, the authors believe that the code contained in this report is much

easier to read and to modify than the version presented in [11] and [15], which used, respectively,

functional programming (Common Lisp), and imperative programming (Pascal). With regard to

the second objective, we find Prolog to be more powerful than English in explaining the logical

conditions for state transitions in the leg plan finite state machines used for implementing the

coordination algorithm. It is especially important that the rules of Figure 6 can be read declara-

tively by humans and procedurally by a computer. One of the consequences of this fact is that

modification of stepping algorithms is remarkably easier in Prolog than in Lisp or Pascal.

It is our belief that our simulation studies to date have shown that the full free gait algo-

rithm developed in this report is appropriate for physical experiments with the ASV. We believe

that the multilingual approach we have used should be retained in such experiments, and that

future vehicle computer upgrades should provide a platform for efficient execution of Prolog and

extended Common Lisp. Finally, we recommend that program development continue to be done

on a Lisp machine with facilities for downloading to a runtime system in the vehicle computer.

Among studies remaining to be conducted are inclusion of vehicle inertia in the simulation,

effects of leg motion on the location of the vehicle center of gravity, and a better simulation of

the vision system. Also, in the experiments reported herein, a constant small value for the

minimum vehicle stability and for the minimum temporal kinematic margin was used. It is

important to determine how variation in these threshold values affects safety and maneuverabil-

24

ity, especially when vehicle inertia is taken into account. Such a study will be undertaken early

in the next phase of this research along with an investigation of further changes to the Prolog rule

set used for the top level of motion coordination.

25

References

[I] McGhee, R. B., "Computer Coordination of Motion for Omni-Directional Hexapod Walking

Machines," Advanced Robotics, Vol. 2, No. 1, pp. 91-99, October 1986.

[2] Waldron, K. J. and McGhee, R. B., "The Adaptive Suspension Vehicle," IEEE Controls

Magazine, Vol. 6, No. 6, pp. 7-12, December 1986.

[3] McGhee, R. B., Orin, D. E., Pugh, D. R., and Patterson, M. R., "A Hierarchically-

Structured System for Computer Control of a Hexapod Walking Machine," Theory and

Practice of Robots and Manipulators, pp. 375-381, ed. by A. Morecki et al, Hermes Publish-

ing, 1985.

[4] Schwan, K., Bihari, T., Weide, B. W., and Taulbee, G., "High-Performance Operating Sys-

tem Primitives for Robots and Real-Time Control Systems," ACM Transactions on Com-

puter Systems, Vol. 5, No. 3, August 1987, pp 189-231.

[5] Klein, C. A., Kau, C. C, Ribble, E. A., and Patterson, M. R., "Vision Processing and

Foothold Selection for the ASV Walking Machine," Proceedings of SPIE Conference -

Advances in Intelligent Robotic Systems, Cambridge, MA, November 1-6, 1987.

[6] Klein, C. A., Olson, K. W., and Pugh, D. R., "Use of Force and Attitude Sensors for

Locomotion of a Legged Vehicle over Irregular Terrain," International Journal of Robotics

Research, Vol. 2, No. 2, Summer 1983, pp. 3-17.

[7] Song, S. M. Kinematic Optimal Design of a Six-Legged Walking Machine, Ph. D. disserta-

tion, The Ohio State University, Columbus, Ohio, 1984.

[8] Bessonov, A. P. and Umnov, N. V., "The Analysis of Gaits in Six-Legged Vehicles Accord-

ing to Their Static Stability," Proceedings of CISM-IFTOMM Symposium on Theory and

Practice of Robots and Manipulators, Udine, Italy, September 1973.

[9] McGhee, R. B., "Robot Locomotion," in Neural Control of Locomotion, pp. 237-264, ed. by

R. M. Herman, et al., Plenum Press, New York, 1976.

[10] McGhee, R. B. and Iswandhi, G. I., "Adaptive Locomotion of a Multilegged Robot over

Rough Terrain," IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No. 4,

pp. 176-182, April 1979.

[II] Kwak, S. H., A Computer Simulation Study of a Free Gait Motion Coordination Algorithm

for Rough- Terrain Locomotion by a Hexapod Walking Machine, Ph. D. dissertation, The

Ohio State University, Columbus, Ohio, 1986.

26

12] Waldron, K. J., et al., A Mobility System Design Study for an Agile Autonomous Land Vehi-

cle, Final Technical Report, Contract DAAE07-84-K-R001, The Ohio State University,

Columbus, Ohio, May 1988.

13] McGhee, R. B., "Walking Machines," in Advances in Automation and Robotics, pp. 259-284,

ed. by G. N. Saridis, Jai Press, Inc. 1985.

14] Pearson, K. G. and Franklin, R., "Characteristics of Leg Movements and Patterns of Coor-

dination in Locusts Walking on Rough Terrain," International Journal of Robotics

Research, Vol. 3, No. 2, Summer 1984.

15] Kwak, S. H., A Simulation Study for Free- Gait Algorithms for Omni- Directional Control of

Hexapod Walking Machines, M. S. thesis, The Ohio State University, Columbus, Ohio, 1984.

16] Steele, G. L., Common Lisp, Digital Press, Maynard, Massachusetts, 1984.

17] Bromley, H. and Lamson, R. Lisp Lore, 2nd edition, Kluwer Academic Publishers, New

York, 1987.

18] McGhee, R. B., "Finite State Control of Quadruped Locomotion," Simulation, Vol 9, No. 3,

pp. 135-140, September 1967.

19] Frank, A. A., Automatic Control Systems for Legged Locomotion Machines, Ph. D. disserta-

tion, University of Southern California, Los Angeles, California, 1968.

20] Clocksin, W. F., and Mellish, C. S., Programming in Prolog, 3rd edition, Springer-Verlag,

New York, 1987.

21] Anon., User's Guide to Symbolics Prolog, Symbolics, Inc., Concord, Massachusetts, Sep-

tember 1986.

22] Winston, P. H., Artificial Intelligence, 2nd edition, Addison-Wesley, Reading, Mas-

sachusetts, 1984.

23] Lee, W. J., and Orin, D. E., "The Kinematics of Motion Planning for Multilegged Vehicles

over Uneven Terrain," IEEE Transactions on Robotics and Automation, Vol. RA-4, No. 3,

April 1988.

24] Lee, W7

. J., and Orin, D. E., "Omnidirectional Supervisory Control of a Multilegged Vehicle

Using Periodic Gaits," IEEE Transactions on Robotics and Automation, Vol. RA-4, No. 2,

August 1988.

27

[25] Hirose, S., Fukuda, Y., and Kikuchi, H., "The Gait Control System of a Quadruped Walk-

ing Machine," Advanced Robotics, Vol. 1, No. 4, December 1986, pp. 289-323.

[26] Klein, C. A. and Messuri, D. A., "Automatic Body Regulation for Maintaining Stability of a

Legged Vehicle During Rough-Terrain Locomation," IEEE Journal of Robotics and Automa-

tion, Vol. RA-1, No. 3, pp. 132-141, September 1985.

[27] Tomovic, R. and McGhee, R. B., "A Finite State Approach to the Synthesis of Bioen-

gineering Control Systems," IEEE Transactions on Human Factors in Electronics, Vol.

HFE-7, No. 2, pp. 65-69, February 1966.

[28] Matlin, M., Cognition, Holt, Rinehart, and Winston, New York, 1983.

28

^^m
robot-display-wi ndoi.

Figure 1: Typical Simulation Terrain and Vehicle

29

Free Gait

Coordinator

Vision

Sensor
Leg1

Leg1 Plan

Machine

T

Leg1 Foothold

Finder

Leg1 Control

Machine

T

Leg1 TKM
Calculator

T

Leg1 Executor

Leg1 Contact

Sensor

Body Joystick

Support Plan

Estimator

Joystick

Command
Regulator

Body

Controller

Stabilty

Calculator

Terrain

Regulator H Calculator

Figure 2: Hierarchy of simulation objects

30

Ready

-•

Return Advance

Lift Descent

Support Contact

Direction of

body movement

Figure 3. Leg motion relative to body during

forward body motion over level terrain

31

Deploy_

command

Leg

Halt

T3

Contact confirm

Recover_

command

T1: 0.6 Seconds

T2: 1.0 Second

T3: 0.4 Seconds

T4: 0.6 Seconds

Figure 4: State diagram for Leg Control Machine

32

Place decision

Deploy_

command

Ready

state

Support_state

and Stable without

Lift decision

Figure 5: State diagram for Leg Plan Machine

33

robot4.prolog >kwak>object-wp SYM4: (1) 3/15/88 09:10:09 Page 1

%%% _*_ Mode: PROLOG; Package: robot-rules; Default-character-style: (: FIX : ROMAN :3

RGE); -*-

robot :- initialize, repeat, loop, fail.

initialize :- X is inits

.

loop :- get_command, plan, execute, !

.

get_command :- X is read_joystick

.

plan :- update_robot_state, check_tkm_limit

,

leg_plan, body_plan, generate_decision, !

.

update_robot_state :- X is update_robot_status

.

check_tkm_limit :- A_leg is at_tkm_limit , A_leg \== nil,

asserta (limit_leg (A_leg, lift))

.

check tkm limit.

leg_plan
leg_plan
leg_plan
leg_plan
leg_plan

stable :-

- lift_a_leg.
- exchange_legs

.

- stable.
- place_a_leg.
- wait_for_legs

.

Condition is stable p, Condition == t

lift_a_leg :- stable, A_leg is smallest_tkm_leg, A_leg \== nil,

Condition is stable_without (A_leg) , Condition == t,

asserta (decision (A_leg, _, lift))

.

exchange_legs :- stable, LegA is smallest_tkm_leg, LegA \== nil,
LegB is max_sm_leg (LegA) , LegB \== nil,

Condition is has_more_tkm (LegB, LegA)

,

Condition == t,

asserta (decision (LegA, LegB, exchange)) .

place_a_leg :- A_leg is max_sm_leg (_) , A_leg \== nil,
asserta (decision (A leg, , place)).

wait_for_legs
wait_for_legs
wait for legs

- try_new_foothold

.

- recovery, asserta (reduce_speed)

.

- asserta (reduce speed), restore limit leg

try_new_foothold :- A_leg is leg_with_new_foothold, A_leg \== nil,

asserta (decision (A_leg,_, place))

.

recovery :- A_leg is do_recovery, A_leg \== nil,
asserta (decision (A_leg,_, place)) , restore_limit_leg.

restore_limit_leg :- retract (limit_leg (A_leg, lift))

.

restore_limit_leg

.

Figure 6: Free Gait Coordinator

34

robot4.proIog >kwak>object-\vp SYM4: (1) 3/15/88 09:10:09 Page 2

lDody_plan :- speed_plan, tra jectory_plan

.

speed_plan :- retract (reduce_speed) , slow_down.
speed_plan :- speed_up.

speed_up :- X is speed_up_robot

.

slow_down :- X is slow_down_robot

.

tra jectory_plan :- stable_m, restore_tra jectory

.

tra jectory_plan :- modify_tra jectory

.

stable_m :- Condition is stable_p_m, Condition == t.

restore_tra jectory :- X is restore_command

.

modify_tra jectory :- X is modify_command.

generate_decision :- retract (decision (A_leg, B_leg, A_decision)) ,

X is send_decision (A_leg, B_leg, A_decision) , fail.
generate_decision :- retract (lirnit_leg (A_leg, A_decision)) ,

X is send_decision (A_leg, _, A_decision) , fail.
generate decision.

execute :- execute_motion, draw_robot, !.

execute_motion :- X is execute_planned_motion

.

draw_robot :- X is graphical_display

.

Figure 6: continued.

35

Appendix

Lisp Code for ASV Simulation

dy-controller.lisp Wed Mar 30 15:27:41 1988 1

;
-*- Mode: LISP; Package: BODY; Syntax: Common-lisp -*-

**

body-controller definition

**

efflavor body-controller (joystick-command-regulator terrain-regulator
H-calculator
body-trans-rat el body-rotate-rat el
body-trans -rate 6 body- rotate-rate

6

body-trans-ratelO body-rot ate-rat el
HI inv-Hl H6 inv-H6 H10 inv-HIO
H inv-H body-t body-r)

init able-instance-variables)

lefmethod (init body-controller)

(setf joystick-command-regulator (make-instance ' joystick-command-regulator)

)

(setf terrain-regulator (make-instance 'terrain-regulator))
(setf H-calculator (make-instance 'H-calculator))
(init joystick-command-regulator)
(init terrain-regulator)
(setf H (init H-calculator)

)

(init-body-rates self)
(init-H self)
HI

)

lefmethod (init-body-rates body-controller)

(setf body-trans-ratel ' (0 0)

)

(setf body-trans-rate6 ' (0 0)

)

(setf body-trans-ratelO '(0 0))
(setf body-rotate-ratel '(0 0))
(setf body-rotate-rate6 '(0 0))
(setf body-rotate-ratelO '(0 0))

)

lefmethod (init-H body-controller)

library fucntion : ident
(setf HI H)

(setf H6 H)

(setf H10 H)

(setf inv-H (matrixinv H)

)

(setf inv-Hl inv-H)
(setf inv-H6 inv-H)
(setf inv-HIO inv-H)

)

body-controller. lisp Wed Mar 30 15:27:41 1988

(defmethod (control body-controller)
(joystick-command deceleration-factor estimated-support-plane)

(setf H HI)

(update self joystick-command deceleration-factor estimated-support-plane)
(save self)
(dotimes (i 10)

(cond ((equal i 0)

(setf body-trans-ratel body-t)
(setf body-rotate-ratel body-r)
(setf HI H)

(setf inv-Hl inv-H)

)

((equal i 5)

(setf body-trans-rate6 body-t)
(setf body-rotate-rate6 body-r)
(setf H6 H)

(setf inv-H6 inv-H)

)

((equal i 9)

(setf body-trans-ratelO body-t)
(setf body-rotate-ratelO body-r)
(setf H10 H)

(setf inv-HIO inv-H)))
(update self joystick-command deceleration-factor estimated-support-plane)
)

(restore self)

)

(defmethod (update body-controller)
(joystick-command deceleration-factor estimated-support-plane)

; internally used by control method
(let* ((t-command (regulate terrain-regulator

estimated-support-plane H)

)

(j-command (regulate joystick-command-regulator
joystick-command deceleration-factor)

)

)

(setf body-t (list (first j-command) (second j-command)
(third t-command))

)

(setf body-r (list (first t-command) (second t-command)
(third j-command))

)

(setf H (new-H H-calculator body-t body-r)

)

(setf inv-H (matrixinv H)))

)

(defmethod (restore body-controller)

; internally used by control method
(restore joystick-command-regulator)
(restore terrain-regulator)
(restore H-calculator)

)

(defmethod (save body-controller)

; internally used by control method
(save joystick-command-regulator)
(save terrain-regulator)
(save H-calculator))

dy-controller.lisp Wed Mar 30 15:27:41 1988

efmethod (get-body-trans-ratel body-controller)

body-trans-ratel)

efmethod (get-body-rotate-ratel body-controller)

body-rot ate-ratel)

efmethod (get-body-trans-ratelO body-controller)

body-trans-ratelO)

efmethod (get-body-rotate-ratelO body-controller)

body-rotate-ratelO)

lefmethod (get-Hl body-controller)

HI)

lefmethod (get-inv-Hl body-controller)

inv-Hl)

lefmethod (get-H6 body-controller)

H6)

lefmethod (get-inv-H6 body-controller)

inv-H6)

lefmethod (get-HIO body-controller)

H10)

lefmethod (get-inv-HIO body-controller)

inv-HIO)

dy.lisp Wed Mar 30 15:27:23 1988 1

. _*_ Mode: LISP; Syntax: Common-lisp; Package: BODY -*-

**

body flavor definition

**

sfflavor body (stability-calculator support -plane-estimator
body-controller owner
estimated-support -plane
decelerat ion- factor
support-plane-clock
modify-vector
modify-vector-p
stop-mot ion- flag
joy-command)

: initable-instance-variables)

;fmethod (slow-down body)

(setf deceleration-factor (+ deceleration-factor 1)

)

(if (> deceleration-factor 20)

(setf deceleration-factor 20))

)

sfmethod (speed-up body)

(setf deceleration-factor (- deceleration-factor 1)

)

(if (< deceleration-factor 0)

(setf deceleration-factor 0))

)

sfmethod (stable-m body)
(supporting- legs)

(stable-m stability-calculator
supporting-legs (get-HIO body-controller))

)

2fmethod (stable-p-m body)
(supporting-p-legs a-leg)

(stable-p-m stability-calculator
supporting-p-legs
(get-Hl body-controller))

)

sfmethod (stop-p body)

(let ((trans-rate (get-body-trans-ratel self))

)

(equal (list (first trans-rate)
(second trans-rate)

)

' (0.0 0.0))))

2 fmethod (modify-command body)

(setf modify-vector
(get-recovery-vector stability-calculator))

)

body. lisp Wed Mar 30 15:27:23 1988

(defmethod (modify-command-p body)

(setf modify-vector-p
(get-recovery-vector-p stability-calculator))

)

(defmethod (restore-command body)

(setf modify-vector ' (0 0)))

(defmethod (restore-command-p body)

(setf modify-vector-p ' (0 0)))

(defmethod (stop-motion body)
(a-leg)

(setf stop-motion-flag a-leg)

)

(defmethod (restore-motion body)

(setf stop-motion-flag nil)

)

(defmethod (init body)

(setf deceleration-factor 0)

(setf modify-vector-p ' (0 0))

(setf modify-vector '(0 0))
(setf stop-motion-flag nil)
(setf support-plane-clock. 10)
(setf stability-calculator

(make-instance ' stability-calculator)

)

(setf support-plane-estimator
(make-instance 'support-plane-estimator)

)

(setf body-controller
(make-instance 'body-controller)

)

(init stability-calculator)
(init support-plane-estimator)
(init body-controller)
)

(defmethod (get-modify-vector body)

(vectsub modify-vector
(dotprod modify-vector

(normalize-vector joy-command)))

)

(defmethod (get-modify-vector-p body)

modify-vector-p)

•dy.lisp Wed Mar 30 15:27:23 1988 3

lefmethod (calculate-motion body)
(joystick-command legs)

(setf joy-command joystick-command)
(cond ((equal support-plane-clock 10)

(setf estimated-support-plane
(get-plane support-plane-estimator legs)

)

(setf support-plane-clock 0))

)

(setf support-plane-clock (+ support-plane-clock 1)

)

(cond

((or stop-motion-flag (null modify-vector-p)

)

(control body-controller
'(0 0)

estimated-support-plane)

)

(modify-vector-p
(control body-controller

(vectadd joy-command (get-modify-vector-p self)

)

deceleration-factor estimated-support-plane)

)

(t

(control body-controller
(vectadd joy-command (get-modify-vector self)

)

deceleration-factor estimated-support-plane)))

)

lefmethod (get-estimated-support-plane body)

estimated-support-plane)

lefmethod (get-body-trans-ratel body)

(get-body-trans-ratel body-controller)

)

lefmethod (get-body-rotate-ratel body)

(get-body-rotate-ratel body-controller)

)

lefmethod (get-body-trans-ratelO body)

(get-body-trans-ratelO body-controller)

)

lefmethod (get-body-rotate-ratelO body)

(get-body-rotate-ratelO body-controller)

)

lefmethod (get-Hl body)

(get-Hl body-controller)

)

lefmethod (get-inv-Hl body)

(get-inv-Hl body-controller)

)

body. lisp Wed Mar 30 15:27:23 1988

(defmethod (get-H6 body)

(get-H6 body-controller)

)

(defmethod (get-inv-H6 body)

(get-inv-H6 body-controller)

)

(defmethod (get-inv-HIO body)

(get-inv-HIO body-controller)

)

(defmethod (more-stable body)
(supporting-legs legl leg2)

(more -st able stability-calculator
supporting-legs (get-HIO body-controller)
legl leg2)

)

(defmethod (stable body)
(supporting- legs)

(stable stability-calculator
supporting-legs (get-HIO body-controller))

)

(defmethod (stable-p body)
(supporting-p-legs)

(stable-p stability-calculator
supporting-p-legs (get-Hl body-controller))

)

atmand-regulator, lisp Wed Mar 30 15:27:43 1988 1

• _*_ Mode: LISP; Syntax: Common-lisp; Package: BODY -*-

regulator flavor definition

lef flavor regulator ((max-a 3.2174) (time-const 0.5) (sampling-time 0.1))

initable-instance-variables)

lefmethod (filter regulator)
(desired-x present-x)

first order regulation
(let ((del-vel (/ (- desired-x present-x) time-const))

)

(+ (* (g-limitor self del-vel) sampling-time)
present-x))

)

lefmethod (g-limitor regulator)
(del-vel)

limit acceleration to 3.2174 ft/ (sec*sec) or 0.1 G,

(cond ((> del-vel max-a) max-a)
((< del-vel (- max-a))

(- max-a)

)

(T del-vel))

)

joystick-command-regulator flavor definition

lefflavor joystick-command-regulator (body-trans-rate-x
body-trans-rate-y
body-rot ate-rate-z
old-body-trans-rate-x
old-body-trans-rate-y
old-body-rotate-rate- z)

(regulator)
initable-instance-variables)

lefmethod (init joystick-command-regulator)

(setf body-trans-rate-x 0.0)
(setf body-trans-rate-y 0.0)
(setf body-rotate-rate-z 0.0)
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

command-regulator . lisp Wed Mar 30 15:27:43 1988 2

(defmethod (regulate joystick-command-regulator)

(
joystick-command deceleration-factor)

(if (<= deceleration-factor 0)

(setf deceleration-factor 0.5)) ; remove effect of deceleration-factor,
(let* ((d-const 0.5)

(x (* (first joystick-command) (/ d-const deceleration-factor)
)

)

(y (* (second joystick-command) (/ d-const deceleration-factor))

)

(r (* (third joystick-command) (/ d-const deceleration-factor)))

)

(setf body-trans-rate-x (filter self x body-trans-rate-x)

)

(setf body-trans-rate-y (filter self y body-trans-rate-y)

)

(setf body-rotate-rate-z (filter self r body-rotate-rate-z))

)

(if (< (abs body-trans-rate-x) 0.02) (setf body-trans-rate-x 0.0))
(if (< (abs body-trans-rate-y) 0.02) (setf body-trans-rate-y 0.0))
(if (< (abs body-rotate-rate-z) 0.005) (setf body-rotate-rate-z 0.0))
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

(defmethod (restore joystick-command-regulator)

(setf body-trans-rate-x old-body-trans-rate-x)
(setf body-trans-rate-y old-body-trans-rate-y)
(setf body-rotate-rate-z old-body-rotate-rate-z)
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

(defmethod (save joystick-command-regulator)

(setf old-body-trans-rate-x body-trans-rate-x)
(setf old-body-trans-rate-y body-trans-rate-y)
(setf old-body-rotate-rate-z body-rotate-rate-z)
(list body-trans-rate-x body-trans-rate-y body-rotate-rate-z)

)

ntrol-machine.lisp Wed Mar 30 15:27:45 1988 1

;
-*- Mode: LISP; Package: LEG; Syntax: Common-lisp; Base: 10 -*

state flavor definition

ef flavor state (name next-state)

: initable-instance-variables)

efmethod (state-name state)

name)

sfmethod (set-next-state state)
(a-state)

(setf next-state a-state)

)

sync-state flavor definition

sfflavor sync-state ((time 0) (del-t 0.1) time-out)
(state)

: initable-instance-variables)

efmethod (change sync-state)

(setf time (+ time del-t))
(cond (

(>= time time-out)
(setf time 0)

next-state)
(t self)))

efmethod (get-time sync-state)

time)

control-machine . lisp Wed Mar 30 15:27:45 1988

async-state flavor definition

**

(defflavor async-state (
(command nil) (observation nil))

(state)
rinitable-instance-variables)

(defmethod (change async-state)
(given-command observed-event)

(cond ((and (not observation)
(equal given-command command)

)

next-state)
((and (not command)

(equal observed-event observation)

)

next-state)
(t self)))

**

state-machine flavor definition

**

(def flavor state-machine (state owner)

: initable-instance-variables)

(defmethod (state-name state-machine)

(state-name state)

)

control-state-machine flavor definition

(defflavor control-state-machine ((command nil) (observation nil)
contact-sensor executor)

(state-machine)
rinitable-instance-variables)

(defmethod (init control-state-machine)

jntrol-machine . lisp Wed Mar 30 15:27:45 1988

(leg-name)
(if (member leg-name ' (legl leg4 leg5)

)

(init-control-machine self 'support)
(init-control-machine self ' ready)

)

(setf contact-sensor (leg-contact-sensor owner)

)

(setf executor (leg-executor owner))

)

iefmethod (init-control-machine control-state-machine)
(a- state-name)

internally used by init method
(let (return lift support contact descent advance ready)

(setf return
(make-instance ' sync-state

: name 'return : time-out 0.6))
(setf lift

(make-instance 'sync-state
:name 'lift : time-out 0.4
:next-state return))

(setf support
(make-instance 'async-state

:name 'support : command ' recover-command
:next-state lift))

(setf contact
(make-instance ' sync-state

:name 'contact : time-out 1.0
: next-state support))

(setf descent
(make-instance 'async-state

:name 'descent : observation 'contact-confirm
:next-state contact))

(setf advance
(make-instance 'sync-state

: name 'advance : time-out 0.6
:next-state descent))

(setf ready
(make-instance 'async-state

: name 'ready : command 'deploy-command
: next-state advance))

(set-next-state return ready)

(setf state (cond ((equal a-state-name
ready)

((equal a-state-name
advance)

((equal a-state-name
descent)

((equal a-state-name
contact)

((equal a-state-name
support)

((equal a-state-name
lift)

((equal a-state-name
return)))

(state-name ready)

)

(state-name advance)

)

(state-name descent)

)

(state-name contact)

)

(state-name support)

)

(state-name lift)

)

(state-name return)

)

iefmethod (change control-state-machine : before)

control-machine. lisp Wed Mar 30 15:27:45 1988

(cond ((typep state ' async-state)
(if (sensing contact-sensor)

(setf observation 'contact-confirm)
(setf observation nil)

)

)))

(defmethod (change control-state-machine)

(cond ((typep state 'sync-state)
(setf state (change state))

)

(t (setf state (change state command observation))))

)

(defmethod (change control-state-machine : after)

; send command to executor with sync-state-time
(send-command executor (state-name state)

)

(if (typep state 'sync-state)
(set-time executor (get-time state)

)

(set-time executor nil))

)

(defmethod (send-command control-state-machine)
(a-command)

(setf command a-command)

)

splay. lisp Wed Mar 30 15:27:49 1988 1

;
-*- mode: lisp; syntax: common- lisp; Package: TERRAIN -*-

display
.
globals

efvar eye-space nil)

efvar middle-of-screen nil)

efvar terrain- joystick)
efvar graph-terrain)
efvar graph-asv)

efvar terrain-sample nil)
efvar terrain-type "Random")
efvar terrain-angle nil)
efvar terrain-percent 0)

efvar terrain-seed 123)

display. library

efun draw-to-earth (a-point)
(let ((draw-pt (make-displayable

middle-of-screen
(transform eye-space a-point)))

)

(zl-user : draw-to
(list (truncate (first draw-pt)

)

(truncate (second draw-pt))

)

zl-user : * robot -window*))

)

efun draw-to-earth-d (a-point)
(let ((draw-pt (make-displayable

middle-of-screen
(transform eye-space a-point)))

)

(zl-user : draw-to-d
(list (truncate (first draw-pt)

)

(truncate (second draw-pt))

)

zl-user: * robot -window*))

)

efun erase-to-earth (a-point)
(let ((draw-pt (make-displayable

middle-of-screen
(transform eye-space a-point)))

)

(zl-user: erase-to
(list (truncate (first draw-pt)

)

(truncate (second draw-pt))

)

zl-user : *robot-window*))

)

display. lisp Wed Mar 30 15:27:49 1988 2

(defun eye-trans (eye-pt)

; eye-pt (radius alpha beta)

; eye:= orient *trans (0, 0, -r) *rot (x, -beta) *rot (y, -alpha) *trans (-x,-y, -z)

; returns eye-space
; library : ident, transmat, rotate, matrixmult

(let* ((orient (ident))
(rot nil) (trans nil) (eye nil)

(radius (first eye-pt)) (alpha (second eye-pt)) (beta (third eye-pt)

)

(center-of-interest (list (/ (terrain-max-x graph-terrain) 2)

(/ (terrain-max-y graph-terrain) 2) 0))

)

(setf (aref orient 2 2) -1.0)
(setf trans (transmat (- radius))

)

(setf eye (matrixmult orient trans)

)

(setf rot (rotatemat 'y-axis (- alpha)))
(setf eye (matrixmult eye rot)

)

(setf rot (rotatemat 'x-axis (- beta)))
(setf eye (matrixmult eye rot)

)

(setf trans (transmat (- (first center-of-interest)

)

(- (second center-of-interest)

)

(- (third center-of-interest)))

)

(matrixmult eye trans))

)

(defun make-displayable (middle pt)
(let ((scale 5000.0)

(x (first pt)) (y (second pt)) (z (third pt)))
(list (+ (* scale (/ x z)) (first middle))

(+ (* scale (/ y z)) (second middle)))))

(defun move-to-earth (a-point)
(let ((draw-pt (make-displayable

middle-of- screen
(transform eye-space a-point)))

)

(zl-user : move-to
(list (truncate (first draw-pt)

)

(truncate (second draw-pt)))))

)

**

joystick flavor definition

**

(defflavor joystick ((joy-x 0) (joy-y 0) (joy-r 0)

)

: initable-instance-variables)

(defmethod (get- joy-value joystick)

(let* ((key-value)
(delta-x 0.2) (delta-y 0.1) (delta-r 0.01))

splay. lisp Wed Mar 30 15:27:49 1988

(setf
(cond

(cond

(cond

(cond

(cond

(list

key-value (zl-user
:
get-keyboard-input)

)

(equal key-value
(equal key-value
(equal key-value
(equal key-value
(equal key-value
(equal key-value
(>= joy-x 2)

(<= joy-x -2)

joy-y
joy-y
joy-r
joy-r

'#\f)
r #\b)
'#\r)

'#\D

'#\-)

(setf joy-x 2)

)

(setf joy-x -2)))

(setf joy-x (+ joy-x delta-x)))

(setf joy-x (- joy-x delta-x)))
(setf joy-y (- joy-y delta-y))

)

(setf joy-y (+ joy-y delta-y))

)

(setf joy-r (- joy-r delta-r))

)

(setf joy-r (+ joy-r delta-r)))

)

1) (setf joy-y 1)

)

-1) (setf joy-y -1)))

0.1) (setf joy-r 0.1))

-0.1) (setf joy-r -0.1))

)

(equal key-value '#\Circle) (setf joy-x
(setf joy-y 0) (setf joy-r 0))

)

joy-x joy-y joy-r (equal key-value ' #\x)

)

(>=

(<=

(>=

(<=

0)

))

efmethod (reset joystick)

(setf joy-x 0)

(setf joy-y 0)

(setf joy-r 0)

)

etf terrain- joystick (make-instance ' joystick)

)

terrain flavor definition

lefflavor terrain ((terrain-data (make-array ' (49 49) : initial-element 0)

terrain-height-array terrain-height-list joystick
(cursor-x) (cursor-y) (max-x) (max-y)

)

: initable-instance-variables
: readable-instance-variables)

lefmethod (create terrain)

(init self)
(modify self)

)

lefmethod (get-height terrain)
(a-pos-wrt -earth)

range =< x <= (first dimension-terrain-height)
=< y <= (second dimension-terrain)

.

(let* ((dimension-terrain-height (array-dimensions terrain-height-array)

)

(x-min 0) (x-max (first dimension-terrain-height))
(x (first a-pos-wrt-earth))

)

(if (or (< x x-min) (> x x-max)

)

-1000
(let* ((i-x (floor x)

)

; get terrain x-index

display . lisp Wed Mar 30 15:27:49 1988 4

(xl (if (< (- x i-x) 0.5) (- i-x 1) i-x)

)

(x2 (if (< (- x i-x) 0.5) i-x (+ i-x 1)))

(xl (if (< xl x-min) xl))

(x2 (if (>= x2 x-max) (- x-max 1) x2)

)

(zl (aref terrain-height-array xl)

)

(z2 (aref terrain-height-array x2)

)

(slope (- z2 zl)

)

(del-x (- x xl))

)

(+ zl (* slope del-x))))))

(defmethod (init terrain)

; globals : middle-of-screen, eye-space
(let ((array-dims (array-dimensions terrain-data))

)

(setf max-x (first array-dims)

)

(setf max-y (second array-dims)

)

(setf cursor-x (floor (/ max-x 2))

)

(setf cursor-y (floor (/ max-y 2)))

)

(zl-user :make-robot-window)
(setf middle-of-screen

(list (/ (zl-user : send zl-user : *robot-window* : inside-width) 2)

(/ (zl-user : send zl-user : *robot-window* : inside-height) 2)))
(setf eye-space (eye-trans (list 500 0)))
(read-terrain-height self)
(draw-terrain self eye-space)
(display-cursor self)
(zl-user : make-visible)
(print "To modify this terrain use keyboard")
(print "If ready, type any key and return")
(read)
(reset terrain- joystick)

)

(defmethod (in-side-of-whole-terrain terrain)
(a-pos)

(let ((dimension-terrain (array-dimensions terrain-data)
(i-x (floor (first a-pos))

)

(i-y (floor (second a-pos)))

)

(cond ((< i-x 0) nil)

(« i-y 0) nil)

((> i-x (- (first dimension-terrain) 1)) nil)

((> i-y (- (second dimension-terrain) 1)) nil)
(T))

))

(defmethod (modify terrain)

; external : eye-space
(do ((radius 500) (alpha 0) (beta 0) (delta 0.0001)

(joystick-value nil)
(end-flag nil)

)

(end-flag (reset joystick) (save-terrain self eye-space)

)

(zl-user : make-visible)
(setf joystick-value (get- joy-value joystick)

)

(let ((x (first joystick-value)

)

(y (second joystick-value)

)

(r (third joystick-value)

)

(fire (fourth joystick-value)))

splay. lisp Wed Mar 30 15:27:49 1988

(erase-terrain self)
(cond

(fire (setf end-flag t)

)

(setf alpha < + alpha 0.05))
(setf alpha (- alpha 0.05))
(setf beta (+ beta 0.05))
(setf beta (- beta 0.05))
(setf radius (+ radius 10))

(setf radius (- radius 10)))

)

(setf eye-space (eye-trans (list radius alpha beta)))

(draw-terrainl self eye-space)))

)

((> x delta)

((< x (- delta)

)

((> y delta)
((< y (- delta))

((> r delta)

((< r (- delta)

)

efmethod (permitted-cell terrain)
(terrain-pos)

(let ((i-x (floor (first terrain-pos))) ; find terrain index
(i-y (floor (second terrain-pos)))

)

(if (in-side-of-whole-terrain self terrain-pos)
(if (equal (aref terrain-data i-x i-y) 0) ; permitted

t

nil))))

efmethod (terrain-point terrain)
(a-pos-wrt -earth)

(let* ((x (first a-pos-wrt-earth)

)

(y (second a-pos-wrt-earth)

)

(z (get-height self (list x y)))

)

(list x y z))

)

etf graph-terrain (make-instance 'terrain
: joystick terrain- joystick)

)

efun init-terrain ()

called to create terrain
(create graph-terrain)

)

terrain. display-terrain

efmethod (display-cursor terrain)

(make-all-permitted self)
(tv : choose-variable-values

' ("Choose terrain type"
(terrain-type "Terrain type" :choose ("Random" "Manual"))))

(if (equal terrain-type "Random")
(random-terrain self)
(do ((joy-data nil) (x nil) (y nil) (r nil) (fire nil)

((> x 0) (setf cursor-x

((< x 0) (setf cursor-x

((> y 0) (setf cursor-y

((< y 0) (setf cursor-y

display. lisp Wed Mar 30 15:27:49 1988 6

(exit-flag nil)

)

(exit-flag (erase-cursor self (list cursor-x cursor-y))

)

(zl-user : make-visible)
(setf joy-data (get- joy-value joystick))

(setf x (- (second joy-data))) (setf y (first joy-data))

(setf r (third joy-data)) (setf fire (fourth joy-data))

(erase-cursor self (list cursor-x cursor-y)

)

(cond
(fire (setf exit-flag t)

(+ cursor-x 1)) (if (> cursor-x max-x)
[setf cursor-x max-x))

)

cursor-x 1)) (if (< cursor-x 0)

[setf cursor-x 0)))

(+ cursor-y 1)) (if (> cursor-y max-y)
[setf cursor-y max-y)))
(- cursor-y 1)) (if (< cursor-y 0)

[setf cursor-y 0))

)

((< r 0) (setf (aref terrain-data cursor-x cursor-y) 1)

)

((> r 0) (setf (aref terrain-data cursor-x cursor-y) 1))

)

(draw-cursor self (list cursor-x cursor-y)

)

(draw-obstacles self)
(reset joystick))))

(defmethod (draw-terrain terrain)
(eye-space)

; external function: \display . library\move-to-earth, draw-to-earth
(dotimes (x (+ max-x 1)

)

(move-to-earth (list x (aref terrain-height-array x))

)

(draw-to-earth (list x max-x (aref terrain-height-array x)))

)

(dotimes (y (+ max-y 1)

)

(move-to-earth (list y 0)

)

(dotimes (x (+ max-x 1))
(draw-to-earth (list x y (aref terrain-height-array x)))))

)

(defmethod (draw-terrainl terrain)
(eye-space)

; external function: \display . library\move-to-earth, draw-to-earth
(do ((xs (list max-x) (cdr xs)

)

(x nil))

((null xs)

)

(setf x (car xs)

)

(move-to-earth (list x (aref terrain-height-array x))

)

(draw-to-earth (list x max-x (aref terrain-height-array x)))

)

(do ((ys (list max-y) (cdr ys)

)

(y nil))
((null ys))

(setf y (car ys)

)

(move-to-earth (list y 0)

)

(dotimes (x (+ max-x 1)

)

(draw-to-earth (list x y (aref terrain-height-array x))))))

(defmethod (erase-obstacles terrain)

; externals : terrain
; external function: \display. library\move-to-earth, draw-to-earth

(dotimes (i (first (array-dimensions terrain-data))

)

(dotimes (j (second (array-dimensions terrain-data)))
(cond ((equal 1 (aref terrain-data i j))

(move-to-earth (list i j)

)

(erase-to-earth (list (+ i 1) (+ j 1)))

play. lisp Wed Mar 30 15:27:49 1988

(move-to-earth (list (+ i 1) j))
(erase-to-earth (list i (+ j 1)))))))

)

fmethod (erase-terrain terrain)

tv: sheet -force-access (zl-user : * robot -window*)
(send zl-user : *robot-window* : clear-window))

)

fmethod (make-all-permitted terrain)

dotimes (i max-x)
(dotimes (j max-y)

(setf (aref terrain-data i j) 0))))

fmethod (read-terrain-height terrain)

(tv : choose-variable-values
' ("Choose a terrain"

(terrain-sample "Terrain sample" :choose ("Sample" "Angle" "Custom"))))
setf terrain-sample "Sample")
cond ((egual terrain-sample "Sample")

(setf terrain-height-list '((19 0) (25 1) (35 1.5))))
((equal terrain-sample "Angle")
(tv : choose-variable-values

' ((terrain-angle "Angle in degree" : number))
':label "Slope of terrain")

(let* ((angle (* pi (/ terrain-angle 180)))
(max (* 20 (tan angle))))

(setf terrain-height-list
(list ' (20 0)

(list 40 max)

))))
(t (print "Please input terrain height.")

(setf terrain-height-list (read)))

)

setf terrain-height-array (make-array (+ max-x 1))

)

let* ((xl 0) (zl 0) (a-pair) (zz 0)

(x2 (first (car terrain-height-list))

)

(z2 (second (car terrain-height-list))

)

(slope (/ (- z2 zl) (- x2 xl)))

)

(setf terrain-height-list (cdr terrain-height-list)

)

(dotimes (i (+ max-x 1)

)

(setf zz (+ (* slope (- i xl)) zl))

(cond ((equal x2 i)

(setf xl x2)

(cond ((setf a-pair (car terrain-height-list)

)

(setf terrain-height-list (cdr terrain-height-list)

)

(setf x2 (first a-pair)

)

(setf z2 (second a-pair)

)

(setf zl zz)

(setf slope (/ (- z2 zl) (- x2 xl)))

)

(T (setf slope 0) (setf zl zz))))

)

(setf (aref terrain-height-array i) zz)))

)

fmethod (save-terrain terrain)
(eye-space)

display. lisp Wed Mar 30 15:27:49 1988

(draw-obstacles self)
(draw-terrain self eye-space)
(zl-user : save-terrain-to-terrain-buf fer)

)

r

; terrain .display-cursor

••••••a**

(defmethod (draw-cursor terrain)

(position)

(let* ((x (first position)

)

(y (second position)

)

(pi (list (+ x 0.2) (+ y 0.2) 0)

)

<p2 (list (+ x 0.8) (+ y 0.2) 0)

)

(p3 (list (+ x 0.8) (+ y 0.8) 0)

)

(p4 (list (+ x 0.2) (+ y 0.8) 0)

)

(points (list p2 p3 p4 pi))

)

(move-to-earth pi)

(do ((points points (cdr points))

)

((null points) 'done-draw-cursor)
(draw-to-earth (car points))))

)

(defmethod (draw-obstacles terrain)

(dotimes (i (first (array-dimensions terrain-data)))
(dotimes (j (second (array-dimensions terrain-data)))

(cond ((equal 1 (aref terrain-data i j)

)

(move-to-earth
(list i j (aref terrain-height-array i))

)

(draw-to-earth
(list (+ i 1) (+ j 1) (aref terrain-height-array (+ i 1))))

(move-to-earth
(list (+ i 1) j (aref terrain-height-array (+ i 1)))

)

(draw-to-earth
(list i (+ j 1) (aref terrain-height-array i)))))))

)

(defmethod (erase-cursor terrain)
(position)

(let* ((x (first position)

)

(y (second position)

)

(pi (list (+ x 0.2) (+

(p2 (list (+ x 0.8) (+

(p3 (list (+ x 0.8) (+

(p4 (list (+ x 0.2) (+

(points (list p2 p3 p4 pi))

)

(move-to-earth pi)
(do ((points points (cdr points))

)

((null points) ' done-erase-cursor)
(erase-to-earth (car points))))

)

y .2) 0))

y 0,.2) 0))

y 0, 8) 0))

y 0,.8) 0))

:splay.lisp Wed Mar 30 15:27:49 1988

efmethod (random-terrain terrain)

(let ((a 43411) (b 17) (c 640001) (x nil))

(tv: choose-variable-values
' ((terrain-percent "Obstacles in percentage" :number)

(terrain-seed "Random number seed" : number))
':label "How much obstacles on the terrain in percentage? ")

(setf x terrain-seed)
(dotimes (i max-x)

(dotimes (j max-y)
(if (< (/ (setf x (mod (+ (* a x) b) c)) c) (/ terrain-percent 100)

(setf (aref terrain-data i j) 1))))

)

(draw-obstacles self)
(zl-user: make-visible))

graph-vehicle flavor definition

efflavor graph-vehicle ((vehicle-points (make-array 28))
(body-points (make-array 10)

)

(polygons (make-array 13)

)

(numpolys nil)
(vertices (make-array 100))

)

: initable-instance-variables)

lefmethod (init-data graph-vehicle)

(read-vehicle-data self)) ; read data from disk

lefmethod (display graph-vehicle)
(a-H foot-positions)

(tv: sheet -force-access (zl-user : * robot -window*)
(send zl-user : * robot -window* : clear-window)

)

(zl-user : copy-terrain-to-robot-window)
(body-pento-wrt-earth self a-H foot -positions)
(draw-vehicle self vehicle-points)
(zl-user :make-visible)

)

lefmethod (read-vehicle-data graph-vehicle)

global variables : vehicle-points, polygons, numpolys, vertices
format of file : num-of-points num-of-polygons

(num a-vehicle-point)

(num-of-vertices vertices-number-of-a-polygon)

display. lisp Wed Mar 30 15:27:49 1988 10

(let* ((vehicle-file (open "object : vehicle .data")

)

(numpts (read vehicle-file)

)

(numvtces 0) (a-polygon nil)

)

(setf numpolys (read vehicle-file)

)

(dotimes (i numpts)
(setf (aref vehicle-points i) (cdr (read vehicle-file)))

)

(dotimes (i 10)

(setf (aref body-points i) (aref vehicle-points i))

)

(dotimes (i numpolys)
(setf a-polygon (read vehicle-file)

)

(setf (aref polygons i) (list numvtces (car a-polygon))

)

(do ((a-polygon-vertices (cdr a-polygon) (cdr a-polygon-vertices)

)

(j (+ j 1)))

((null a-polygon-vertices)

)

(setf (aref vertices (+ numvtces j)

)

(- (first a-polygon-vertices) 1))

)

(setf numvtces (+ numvtces (car a-polygon)))

)

(close vehicle-file))

)

(setf graph-asv (make-instance 'graph-vehicle))

**

graph-vehicle . display

**

(defmethod (body-pento-wrt-earth graph-vehicle)
(a-H foot-positions)

; library : transform
(let ((si 0.6616) (s2 0.945) (s3 3.308) (1 0.8133) (m 1.0467)

(hipx-list '(5.1667 5.1667 0.0 0.0 -4.9167 -4.9167))
(hipy-list '(1.62 -1.62 1.62 -1.62 1.62 -1.62))
(signl-list '(1-1 1-1 1 -1))
(sign2-list '(1 1 1 1-1-1)))

(transform-body-points self a-H body-points)
(do ((positions foot-positions (cdr positions)

)

(hipx-list hipx-list (cdr hipx-list)

)

(hipy-list hipy-list (cdr hipy-list)

)

(signl-list signl-list (cdr signl-list)

)

(sign2-list sign2-list (cdr sign2-list)

)

(i (+ i 1)))
((null positions) nil)

(let* ((foot-pos (car positions)

)

(hipx (car hipx-list)) (hipy (car hipy-list))
(signl (car signl-list)) (sign2 (car sign2-list)

)

(px (- (first foot-pos) hipx))

(py (
_ (second foot-pos) hipy)

)

(pz (third foot-pos)

)

(theta (vehicle-theta py pz m signl)

)

(dm (vehicle-dm px sign2)

)

(dl (vehicle-dl py pz m 1)

)

(top-pos nil) (knee-pos nil)

)

(setf top-pos
(transform a-H

(vehicle-top-pos hipx hipy m 1 dl theta signl)))
(setf knee-pos

(transform a-H

Isplay.lisp Wed Mar 30 15:27:49 1988 11

(vehicle-knee-pos hipx hipy m 1 si s2 s3
dl dm theta signl sign2))

)

(setf foot-pos (transform a-H foot-pos)

)

(setf (aref vehicle-points (+ 10 (* 3 i))

)

top-pos)
(setf (aref vehicle-points (+ 11 (* 3 i)))

knee-pos)
(setf (aref vehicle-points (+ 12 (* 3 i))

)

foot-pos))))

)

[efmethod (draw-vehicle graph-vehicle)
(vehicle-points)

global variables : polygons, numpolys, vertices
(dotimes (i numpolys)

(let ((start (first (aref polygons i))

)

(num-vert ices (second (aref polygons i)))

)

(move-to-earth (aref vehicle-points
(aref vertices start))

)

(dotimes (j num-vertices)
(draw-to-earth-d (aref vehicle-points

(aref vertices (+ start j))))

)

)))

graph-vehicle . display .body-pento-wrt-earth

efmethod (transform-body-points graph-vehicle)
(a-H body-points)

globals : vehicle-points
library : transform
(dotimes (i 10)

(setf (aref vehicle-points i)

(transform a-H (aref body-points i))))

)

lefun vehicle-dl (py pz m 1)

(/ (- (sqrt (+ (* py py) (* pz pz) (- (* m m)))) 1)

4))

efun vehicle-dm (px sign2)
(* sign2 (/ px 5))

)

lefun vehicle-knee-pos (hipx hipy m 1 si s2 s3
dl dm theta signl sign2)

(let* ((numer (+ (* si si) (- (* s2 s2)) (* dl dl) (* dm dm)))
(denom (* 2 si (sqrt (+ (* dl dl) (* dm dm)))))
(beta (acos (/ numer denom))

)

(alpha (- (/ pi 2) (atan dm dl) beta)

)

display. lisp Wed Mar 30 15:27:49 1988 12

(sina (sin alpha)) (cosa (cos alpha)

)

(sint (sin theta)) (cost (cos theta)

)

(temp (- (* s3 sina) (- dl 1)))
(xk (+ (* sign2 s3 cosa) hipx)

)

(yk (+ (* signl (+ (* temp sint) (* m cost))) hipy)

)

(zk (- (+ (* temp cost) (* m sint)))))
(list xk yk zk))

)

(defun vehicle-theta (py pz m signl)
(let* ((anglel (atan (* signl py) (* -1 pz))

)

(angle2 (atan m (sqrt (+ (* py py)
(* pz pz)
(- (* m m)))))))

(- anglel angle2))

)

(defun vehicle-top-pos (hipx hipy m 1 dl theta signl)
(let* ((xt hipx)

(1-dl (- 1 dl))
(sina (sin theta)

)

(cosa (cos theta)

)

(yt (+ (* signl (+ (* m cosa) (* 1-dl sina))) hipy))
(zt (- (* m sina) (* 1-dl cosa))))

(list xt yt zt))

)

ecutor.lisp Wed Mar 30 15:27:51 1988 1

I -*- Mode: LISP; Package: LEG; Syntax: Common- lisp; Base: 10 -*-

**

executor flavor definition

**

efflavor executor
(leg-pos-wrt-body de si red- foot hold-pos-wrt -earth

time command owner sensor (lift-height 1.4)
(Tl 0.6) (T2 1.0) (T3 0.4) (T4 0.6)
(planned-contact-time 0.4) self-time
(sampling-time 0.1) ready-pos
HI inv-Hl body-trans-ratel body-rotate-ratel)

:initable-instance-variables)

afmethod (set-desired-pos executor)
(a-pos)

(setf desired-foothold-pos-wrt-earth a-pos)

)

sfmethod (get-desired-pos executor)

desired- foot hold-pos-wrt -earth)

sfmethod (send-command executor)
(a-command)

(setf command a-command)

)

sfmethod (set-time executor)
(a-time)

(setf time a-time)

)

efmethod (leg-pos-wrt-body executor)

leg-pos-wrt-body)

sfmethod (move executor)
(H inv-H body-trans-rate body-rotate-rate)

(setf HI H)

(setf inv-Hl inv-H)
(setf body-trans-ratel body-trans-rate)
(setf body-rotate-ratel body-rotate-rate)
(cond ((egual command ' ready)

(move-in-ready self)

)

((equal command 'advance)
(move-in-advance self)

)

((equal command 'descent)
(move-in-descent self)

)

((equal command 'contact)

executor. lisp Wed Mar 30 15:27:51 1988

(move-in-contact self)

)

((equal command 'support)
(move-in-support self)

)

((equal command 'lift)
(move-in-lift self)

)

((equal command 'return)
(move-in-return self)

)

)

(defmethod (move-in-contact executor)

(let ((leg-velocity-wrt-body (find-velocity-wrt-body self))

)

(setf leg-pos-wrt-body
(vectadd (magvect sampling-time leg-velocity-wrt-body)

leg-pos-wrt-body)))

)

(defmethod (find-velocity-wrt-body executor)

returns foot-velocity-wrt-body
velocity = -

(body-trans-rate + body-rotate-rate X leg-pos)

globals v : body-trans-ratel, body-rotate-ratel
lib : vectsub, vectadd, crossprod
(vectsub '(0 0)

(vectadd body-trans-ratel
(crossprod body-rotate-ratel leg-pos-wrt-body)))

)

(defmethod (move-in-advance executor)

(let ((desired-pos (desired-advance-pos-wrt-body self)

)

(dt (- Tl time))

)

(move-del self desired-pos leg-pos-wrt-body dt)

)

(setf self-time 0.0))

(defmethod (desired-advance-pos-wrt-body executor)

; a-pos is desired-stepping-pos-wrt-earth
; returns desired-pos-wrt-body in deploy state
; global variable : HI, inv-Hl
; global function : to-earth-transform, to-body-transform, find-terrain-hegiht

(let* ((desired-pos-wrt-earth desired-foothold-pos-wrt-earth)
(terrain-height (third (terrain-point owner desired-pos-wrt-earth))

)

(desired-pos-height-wrt-earth (+ terrain-height lift-height)

)

(pos-wrt-earth (list (first desired-pos-wrt-earth)
(second desired-pos-wrt-earth)
desired-pos-height-wrt-earth))

)

(to-body-transform inv-Hl pos-wrt-earth)
)

)

(defmethod (move-in-descent executor)

; global function : to-body-transform
; global variables : inv-Hl

(let ((dt (- planned-contact-time self-time)
)

)

(if (< dt 0.05)
(setf leg-pos-wrt-body (to-body-transform

icutor.lisp Wed Mar 30 15:27:51 1988 3

inv-Hl de sired- foot hold-pos-wrt -earth)
(move-del self

(to-body-transform inv-Hl desired-foothold-pos-wrt-earth)
leg-pos-wrt-body dt)))

)

sfmethod (move-in-descent executor : after)

(setf self-time (+ self-time sampling-time))

)

•fmethod (move-del executor)
(desired-pos present-pos dt)

»et new leg-pos depending on the arguments
.ib : vectadd, magvect
(if (< dt 0.05)

(setf leg-pos-wrt-body desired-pos)
(let* ((inv-time-diff (/ 1 dt))

(del (vectsub desired-pos present-pos)

)

(velocity (magvect inv-time-diff del))

)

(setf leg-pos-wrt-body
(vectadd present-pos (magvect sampling-time velocity)))))

)

sfmethod (move-in-lift executor)

[let* ((dt (- T3 time)

)

(desired-pos (lift-pos-desired self)

)

(z (third desired-pos)))

(move-del self desired-pos leg-pos-wrt-body dt)
(setf ready-pos

(list (first ready-pos) (second ready-pos) z)))

)

sfmethod (lift-pos-desired executor)
returens position-wrt-body which will be at the end of lift state.
flobal f : to-body-transform,
flobal v : inv-Hl

(let* ((leg-pos-wrt-earth (to-earth-transform HI leg-pos-wrt-body)

)

(desired-height (+ lift-height (third (terrain-point owner leg-pos-wrt-earth)
)))

)

(to-body-transform inv-Hl (list (first leg-pos-wrt-earth)
(second leg-pos-wrt-earth)
desired-height)))

)

sfmethod (move-in-ready executor)

(setf leg-pos-wrt-body ready-pos)

)

sfmethod (move-in-return executor)

lodifying leg-pos-z is redundent but it can correct disturbance by itself
(let ((dt (- T4 time)

)

(desired-pos ready-pos)

)

(move-del self desired-pos leg-pos-wrt-body dt)))

executor . lisp Wed Mar 30 15:27:51 1988

(defmethod (move-in-support executor)

; globals : body-trans-ratel, body-rotate-ratel
; lib : vectadd, magvect
; In general terrain, leg-pos-z should be updated by real terrain height

(let ((leg-velocity-wrt-body (find-velocity-wrt-body self))

)

(setf leg-pos-wrt-body
(vectadd (magvect sampling-time leg-velocity-wrt-body)

leg-pos-wrt-body)))

)

((x

(y
(z

(cond (

(defmethod (init executor)
(leg-name init-H)

(setf sensor (leg-contact-sensor owner)

)

(let ((x (aref init-H 3))
(aref init-H 1 3)

)

(aref init-H 2 3)))
(equal leg-name 'legl)
(setf ready-pos ' (5 3 -4)

)

(setf leg-pos-wrt-body (list 6 3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (+ x 6)

((equal leg-name 'leg2)
(setf ready-pos ' (5 -3 -4)

)

(setf leg-pos-wrt-body (list 5-3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (+ x 5)

((equal leg-name 'leg3)
(setf ready-pos ' (3 -4)

)

(setf leg-pos-wrt-body (list 3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (+ x 0)

((equal leg-name 'leg4)
(setf ready-pos ' (-3 -4)

)

(setf leg-pos-wrt-body (list 0-3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (+ x 0)

((equal leg-name 'leg5)
(setf ready-pos ' (-5 3 -4)

)

(setf leg-pos-wrt-body (list -5 3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (- x 5)

((equal leg-name 'leg6)
(setf ready-pos ' (-5 -3 -4)

)

(setf leg-pos-wrt-body (list -5 -3 (- z))

)

(setf desired-foothold-pos-wrt-earth (list (- x 5)

)

(+ y 3) 0)))

(- y 3) 0)))

(+ y 3) 0)))

(- y 3) 0)))

(+ y 3) 0)))

(- y 3) 0)))))

othold.lisp Wed Mar 30 15:27:54 1988 1

. _*_ Mode: LISP; Syntax: Common-lisp; Package: LEG -*

efflavor foothold-finder (sixteen-footholds
four-lines tkm-calculator
(no-cell-available-flag nil)
(TKM-margin 0.4) owner)

:init able-instance-variables)

efmethod (init foothold-finder
(leg-name)

(cond ((equal leg-name 'legl)
(setf sixteen-footholds

' ((7.3

(6.3

(5.3
(4.3

3)

3)

3)

3)

.3

.3

.3

.3

3.3) (7.3 2.3) (7.3 1.3)
3.3) (6.3 2.3) (6.3 1.3)
3.3) (5.3 2.3) (5.3 1.3)
3.3) (4.3 2.3) (4.3 1.3))

)

(setf four-lines
'

(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.

((equal leg-name 'leg2)
(setf sixteen-footholds

'
((7.3 -4.3) (7

(6.3 -4.3) (6

(5.3 -4.3) (5

(4.3 -4.3) (4

(setf four-lines
'

(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.

((equal leg-name 'leg3)
(setf sixteen-footholds

' ((1.5

(0.5
(-0.5
(-1.5

3)

3)

3)

3)

(1

(

(-0

(-1

(setf four-lines
'

(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.

((equal leg-name 'leg4)
(setf sixteen-footholds

' ((1.5 -4.3) (1

(0.5 -4.3) (

(-0.5 -4.3) (-0

(-1.5 -4.3) (-1

(setf four-lines
'

(((0 0.3420 -0.

((0 -0.3420 -0.

((0 -0.3420 -0.

((0 0.3420 -0.

((equal leg-name 'leg5)
(setf sixteen-footholds

'
((-4.0 4.3) (-4

(-5.0 4.3) (-5
(-6.0 4.3) (-6

(-7.0 4.3) (-7

9397) (8.0832 2.7339 0)

)

9397) (8.0832 2.7339 0)

)

9397) (3.4167 2.7339 0)

)

9397) (3.4167 2.7339 0))))

)

.3 -3.3) (7.3 -2.3) (7.3 -1.3)

.3 -3.3) (6.3 -2.3) (6.3 -1.3)

.3 -3.3) (5.3 -2.3) (5.3 -1.3)

.3 -3.3) (4.3-2.3) (4.3 -1.3))

)

9397) (8.0832 -2.7339 0)

)

9397) (8.0832 -2.7339 0)

)

9397) (3.4167 -2.7339 0)

)

9397) (3.4167 -2.7339 0))))

)

.5 3.3) (1.5 2.3) (1.5 1.3)

.5 3.3) (0.5 2.3) (0.5 1.3)

.5 3.3) (-0.5 2.3) (-0.5 1.3)

.5 3.3) (-1.5 2.3) (-1.5 1.3)))

9397) (2.2915 2.7339 0)

)

9397) (2.2915 2.7339 0)

)

9397) (-2.2915 2.7339 0)

)

9397) (-2.2915 2.7339 0)))))

.5 -3.3) (1.5 -2.3) (1.5 -1.3)

.5 -3.3) (0.5 -2.3) (0.5 -1.3)

.5 -3.3) (-0.5 -2.3) (-0.5 -1.3)

.5 -3.3) (-1.5 -2.3) (-1.5 -1.3)))

9397) (2.2915 -2.7339 0)

)

9397) (2.2915 -2.7339 0)

)

9397) (-2.2915 -2.7339 0)

)

9397) (-2.2915 -2.7339 0)))))

.0 3.3) (-4.0 2.3) (-4.0 1.3)

.0 3.3) (-5.0 2.3) (-5.0 1.3)

.0 3.3) (-6.0 2.3) (-6.0 1.3)

.0 3.3) (-7.0 2.3) (-7.0 1.3)))

foothold. lisp Wed Mar 30 15:27:54 1988 2

(setf four-lines
'(((0 0.3420 -0.9397) (-3.3332 2.7339 0))

((0 -0.3420 -0.9397) (-3.3332 2.7339 0))

((0 -0.3420 -0.9397) (-7.8332 2.7339 0))

((0 0.3420 -0.9397) (-7.8332 2.7339 0)))))
((equal leg-name 'leg6)
(setf sixteen-footholds

'((-4.0 -4.3) (-4.0 -3.3) (-4.0 -2.3) (-4.0 -1.3)

(-5.0 -4.3) (-5.0 -3.3) (-5.0 -2.3) (-5.0 -1.3)

(-6.0 -4.3) (-6.0 -3.3) (-6.0 -2.3) (-6.0 -1.3)

(-7.0 -4.3) (-7.0 -3.3) (-7.0 -2.3) (-7.0 -1.3)))
(setf four-lines

'(((0 0.3420 -0.9397) (-3.3332 -2.7339 0))

((0 -0.3420 -0.9397) (-3.3332 -2.7339 0))

((0 -0.3420 -0.9397) (-7.8332 -2.7339 0))

((0 0.3420 -0.9397) (-7.8332 -2.7339 0)))))

)

(setf tkm-calculator (leg-tkm-calculator owner)

)

)

(defmethod (find-foothold foothold-finder)
(H6 inv-H6 body-trans-ratelO body-rotate-ratelO

est imated-support -plane)
; returns ((max-foothold max-tkm) (foothold-list) (tkm-list)

)

; all points are wpt body coordinate system,
(let* ((estimated-support-plane-wrt-body

(plane-transform estimated-support-plane H6)

)

(four-points (four-points-on- support -plane
self
four-lines estimated-support-plane-wrt-body)

)

(possible-footholds (get -possible- footholds
self
(estimate- foot holds
self
four-points est imated- support -plane-wrt -body)

H6 inv-H6))

)

(get -foothold-with-max-TKM
self
possible-footholds H6
body-trans-ratelO body-rotate-ratelO)))

>n**n

; foothold-finder . find-foothold

(defmethod (estimate-footholds foothold-finder)
(four-points-wrt-body est imated- support -plane-wrt -body)

; returns estimate-footholds-wrt-body
(do* ((footholds sixteen-footholds (cdr footholds)

)

jthold.lisp Wed Mar 30 15:27:54 1988 3

(out-footholds nil)
(a-foothold nil)

)

((null footholds)
(get-points-on-support-plane out-footholds estimated-support-plane-wrt-body)

)

(setf a-foothold (car footholds)

)

(if (in-side-of-polygon a-foothold
(pick-two-dimensions four-point s-wrt-body)

)

(setf out-footholds (cons a-foothold out-footholds))))

)

jfmethod (four-points-on-support-plane foothold-finder)
(four-lines estimated- support -plane-wrt -body)

returns four points which are intersected by four-lines on
i st imated- support -plane-wrt-body
riath lib: plane-intersection
(do* ((lines four-lines (cdr lines)

)

(points nil)

)

((null lines) points)
(setf points (cons (plane-intersection (car lines)

estimated-support-plane-wrt-body)
points)))

)

ifmethod (get-foothold-with-max-TKM foothold-finder)
(possible-footholds H

body-trans-rate body-rotate- rate)
returns ((max-foothold max-tkm) (foothold-list) (tkm-list))
sets no-cell-available-flag
real-footholds is really possible footholds

(do ((footholds possible-footholds (cdr footholds)

)

(max-foothold nil) (a-foothold nil) (TKM-list nil) (a-TKM nil)
(real-footholds nil) (max-TKM -100.0))

((null footholds)
(setf no-cell-available-flag (< max-TKM TKM-margin)

)

(if (>= max-TKM TKM-margin)
(make-output -form
max-foothold max-TKM real-footholds TKM-list H)

nil))
(setf a-foothold (car footholds)

)

(setf a-TKM (find-tkm tkm-calculator
a-foothold body-trans-rate body-rotate-rate)

)

(if a-TKM
(progn (setf TKM-list (cons a-TKM TKM-list))

(setf real-footholds (cons a-foothold real-footholds)

)

(if (> a-TKM max-TKM)
(progn (setf max-TKM a-TKM)

(setf max-foothold a-foothold)))))))

ifmethod (get-possible-footholds foothold-finder)
(estimated-footholds H inv-H)

returns possible-footholds wrt body
(to-body-transform inv-H

(find-possible-footholds self
(to-earth-transform H estimated-footholds)

)

I)

foothold. lisp Wed Mar 30 15:27:54 1988 4

. n ******************************** **********************"

; foothold-finder . estimate-foothold

.n**"

(defun check-polarity (pointl point2 point3)
(let* ((vectl (vectsub point2 pointl)

)

(vect2 (vectsub point3 pointl))

)

(if (not (third vectl))
(progn (setf vectl (reverse (cons (reverse vectl))))

(setf vect2 (reverse (cons (reverse vect2)))))

)

(crossprod vectl vect2))

)

(defun get-points-on-support-plane (points estimated-support-plane-wrt-body)
; returns intersection points with support plane in z-body direction.

; math lib: plane-intersection
(do* ((points points (cdr points)

)

(out-points nil)

)

((null points) out-points)
(setf out-points (cons (plane-intersection

(make-line-to-get -point -on-support -plane
(car points)

)

estimated-support-plane-wrt-body) out-points)))

)

(defun in-side-of-polygon (a-point polygon-points)
; polygon-points must be convext-polygon and in order & two dimensional points

(do* ((first-points polygon-points (cdr first-points)

)

(second-points (reverse (cons (car first-points)
(reverse (cdr first-points)))

)

(cdr second-points)

)

(signs nil) (first-point nil) (second-point nil)

)

((null first-points) (same-polarity signs)

)

(setf first-point (car first-points)

)

(setf second-point (car second-points)

)

(setf signs (cons (check-polarity first-point second-point a-point)
signs))))

(defun make-line-to-get-point-on-support -plane (a-point)
; a-point is two dimensional point

.

; returns a-line ((z-direction) (a-point -100))
(list '(0 1) (list (first a-point) (second a-point) -100)))

(defun pick-two-dimensions (points)
(if (listp (first points))

(do* ((points points (cdr poir
(a-nn-int- n-i 1 ^

V i- -L J- O U [.'U1IILS/ ;

(points points (cdr points)) ; more than one point case
(a-point nil)
(out-points nil)

)

wC a-point) (second a-point)

)

out-points))

)

(list (first points) (second points)))) ; one point case

iothold.lisp Wed Mar 30 15:27:54 1988

efun same-polarity (signs)

t(do ((signs (cdr signs) (cdr signs))
(first-sign (plusp (third (car signs))))
(same T)

)

((null signs) same)
(if (not (equal first-sign (plusp (third (car signs))))

)

(setf same nil)))

)

•a**"

foothold-finder . find-foothold
.
get-foothold-with-MAX-tkm

** it

efun make-output-form
(max-foothold max-TKM possible-footholds TKM-list H)

output-form : ((foot hold-wit h-max-tlcm tkm)
(leg-pro jected-permitted- footholds)
(leg-pro jected-TKM-list)

)

output footholds are in earth coordinate,
math lib : to-earth-transform
(list (list (to-earth-transform H max-foothold) max-TKM)

(to-earth-transform H possible-footholds)
TKM-list)

)

**n

foothold- finder . select-foothold. get -possible- foot hold

**n

efmethod (find-possible-footholds foothold-finder)
(estimated-footholds-wrt-earth)

returns possible- footholds-wrt -earth
use vision
(do* ((footholds estimated-footholds-wrt-earth (cdr footholds)

)

(a-foothold nil) (t-cell nil) (out-footholds nil)

)

((null footholds) (unique-footholds-only out-footholds))

(setf a-foothold (car footholds)

)

(setf t-cell (get-center-of-digitized-terrain-cell a-foothold)

)

(if (permitted-cell owner t-cell)
(setf out-footholds

(cons (terrain-point owner t-cell)
out-footholds))))

)

efun get-center-of-digitized-terrain-cell (a-foothold)

foothold. lisp Wed Mar 30 15:27:54 1988

; cell resolution is 1 foot by 1 foot
(list (+ (floor (first a-foothold)) 0.5)

(+ (floor (second a-foothold)) 0.5)))

(defun unique-footholds-only (mixed-footholds)
(do* ((footholds mixed-footholds (cdr footholds))

(out-footholds nil)
(a-foothold nil)

)

((null footholds) out-footholds)
(setf a-foothold (car footholds)

)

(if (not (member a-foothold out-footholds :test 'equal))
(setf out-footholds (cons a-foothold out-footholds)))

)

tph.lisp Wed Mar 30 15:27:56 1988 1

. _*_ mode: lisp; syntax: zetalisp; Package: USER -*-

low level graph routines

sfvar *robot-display-window* nil)
»£var *robot-display-window-array* nil)

;fvar * robot-window* nil)
;fvar *robot-window-array* nil)

sfvar *robot-window-width* nil)
fvar *robot-window-height* nil)
;fvar *terrain-buf fer* nil)
jfvar *terrain-buf fer-array* nil)

;fvar *max-y* nil)
ifvar *start -point* nil)

fun kill-all-windows ()

(send *robot-display-window* :kill)
(send *robot-window* :kill)
(send *terrain-buffer* :kill))

ifun copy-terrain-to-robot-window ()

(tv: sheet -force-access (* robot -window*)
(send * robot -window* :bitblt
tv:alu-ior *robot-window-width* *robot-window-height

*

terrain-buffer-array 2 2 0)))

ifun draw-to (a-point a-window)
jlobal variables : *start-point*
(tv: sheet-force-access (a-window)

(send a-window ':draw-line (first *start-point*)
(- *max-y* (second *start-point *)

)

(first a-point)
(- *max-y* (second a-point)) tv:alu-ior)

)

(setq *start-point* a-point)

)

sfun draw-to-d (a-point a-window)
jlobal variables : *start-point*
(tv: sheet-force-access (a-window)

(send a-window ' :draw-fat-line (first *start-point*)
(- *max-y* (second *start-point*)

)

(first a-point)
(- *max-y* (second a-point)) tv:alu-ior))

(setq *start-point* a-point)

)

ifun erase-to (a-point a-window)
jlobal variables : *start-point

*

(tv: sheet-force-access (a-window)
(send a-window ':draw-line (first *start -point*)

(- *max-y* (second *start-point*)

)

(first a-point)

graph. lisp Wed Mar 30 15:27:56 1988 2

(- *max-y* (second a-point)) tv:alu-andca)

)

(setq *start-point* a-point))

(defun get-keyboard-input ()

; This is not for the graphics, but this function uses Zeta LISP.

; This is the reason why this function is in Zeta graphic package

(send terminal-io : tyi-no-hang)

)

(defun make-robot-window ()

(setq *robot-display-window* (tv: make-window 'tv:window
' :blinker-p nil
':edges-from :mouse
' :borders 2

': label "robot-display-window"
' :name "robot-display-window"

' : save-bits t
' :expose-p t))

(let* ((r-w (send *robot-display-window* rwidth))

(r-h (send *robot-display-window* :height))
(r-x nil) (r-y nil)

)

(multiple-value (r-x r-y) (send *robot-display-window* :position)

)

(setq *robot-window* (tv :make-window 'tv: window
' :position (list r-x r-y)
' : width r-w
' : height r-h
' :blinker-p nil
' : borders 2

': label "robot-window"
' : name "robot-window"
' : save-bits t

':expose-p nil))
(setq *terrain-buf fer* (tvrmake-window 'tv:window

':position (list r-x r-y)
' : width r-w
' : height r-h
' :blinker-p nil
'

: borders 2

': label "terrain-buffer"
' : name "terrain-buffer"
' : save-bits t
' :expose-p nil)

)

(setq *max-y* (send *robot-window* : inside-height))

)

(setq *robot-display-window-array* (send *robot-display-window* :bit-array))
(setq *robot-window-array* (send *robot-window* : bit-array)

)

(setq *robot-window-width* (send * robot -window* : inside-width)

)

(setq *robot-window-height * (send *robot-window* : inside-height)

)

(setq *terrain-buf fer-array* (send *terrain-buf fer* :bit-array))

)

(defun make-visible ()

(send *robot-display-window* :bitblt
tv:alu-seta *robot-window-width* *robot-window-height

*

robot-window-array 2 2 0))

(defun move-to (a-point)

; global variables : *start-point*
; This function just changes *start-point

*

iph.lisp Wed Mar 30 15:27:56 1988

setq *start-point * a-point))

:fun save-terrain-to-terrain-buf fer ()

tv: sheet-force-access (*terrain-buf fer*)
(send *terrain-buf fer* :bitblt
tv:alu-seta *robot-window-width* *robot-window-height

*

robot-window-array 2 2 0)))

calculator. lisp Wed Mar 30 15:27:57 1988 1

1 _*_ Mode: LISP; Syntax: Common-lisp; Package: BODY -*-

sfflavor H-calculator ((sampling-time 0.1) H

old-H)

init able-instance-variables)

efmethod (init H-calculator)

library fucntion : ident
(setf H (ident)

)

(setf (aref H 3) 6.5)
(setf (aref H 1 3) 19.5)
(setf (aref H 2 3) 5.4)
H)

»fmethod (new-H H-calculator)
(body-trans-rate body-rotate- rate)

(setf H
(orthogonalization

(get-new-H
H
(get-del-H
H

(get-delta body-trans-rate body-rotate-rate sampling-time)))))

)

sfmethod (save H-calculator)

(setf old-H H)

)

efmethod (restore H-calculator)

(setf H old-H))

H-calculator . new-H

efun get-delta (body-trans-rate body-rotate-rate sampling-time)
(let* ((del-trans-x (* (first body-trans-rate) sampling-time)

(del-trans-y (* (second body-trans-rate) sampling-time)
(del-trans-z (* (third body-trans-rate) sampling-time)
(del-rotate-x (* (first body-rotate-rate) sampling-time)
(del-rotate-y (* (second body-rotate-rate) sampling-time)
(del-rotate-z (* (third body-rotate-rate) sampling-time)

(list (list del-trans-x del-trans-y del-trans-z)
(list del-rotate-x del-rotate-y del-rotate-z)))

)

efun get-del-H (H delta-trans-rotate)

h-calculator . lisp Wed Mar 30 15:27:57 1988

math lib : ident
(let* ((H-del (ident))

(delta-trans (fi

(delta-rotate (se

(setf (aref H-del 0)

(setf (aref H-del 1 0)

(setf (aref H-del 2 0)

(setf (aref H-del 1)

(setf (aref H-del 1 1)

(setf (aref H-del 2 1)

(setf (aref H-del 2)

(setf (aref H-del 1 2)

(setf (aref H-del 2 2)

(setf (aref H-del 3)

(setf (aref H-del 1 3)

(setf (aref H-del 2 3)

(setf (aref H-del 3 3)

; initialze identity matirix
rst delta-trans-rotate)

)

cond delta-trans-rotate))

)

0)

(third delta-rotate)

)

(- (second delta-rotate))

)

(- (third delta-rotate))

)

0)

(first delta-rotate)

)

(second delta-rotate)

)

(- (first delta-rotate))

)

0)

(first delta-trans)

)

(second delta-trans)

)

(third delta-trans)

)

0)

(matrixmult H H-del))

)

(defun get-new-H (H del-H)
(matrixadd H del-H)

)

I.lisp Wed Mar 30 15:27:59 1988 1

-*- Package: LEG; Mode: LISP; Syntax: Common-lisp; Base: 10 -'

**

leg flavor definition

**

:fflavor leg (name owner plan-machine control-machine
executor contact-sensor tkm-calculator
foothold-finder exchanged-leg
foothold tkm foothold-list tkm-list tkm-p
reserved-foothold reserved-tkm)

initable-instance-variable

s

readable-instance-variables)

fmethod (init leg)
(H)

(setf contact-sensor
(setf executor

(make-instance 'contact-sensor
(make-instance 'executor

: owner self)

)

: owner self)

)

(setf control-machine (make-instance 'control-state-machine : owner self))
(setf plan-machine (make-instance 'plan-state-machine : owner self))
(setf tkm-calculator (make-instance 'tkm-calculator : owner self))
(setf foothold-finder (make-instance 'foothold-finder : owner self))
(setf foothold (init executor name H)

)

(init contact-sensor name)
(init control-machine name)
(init plan-machine name)
(init tkm-calculator name)
(init foothold-finder name))

fmethod (contact-confirm leg)

contact-p contact-sensor)

)

fmethod (do-planned-motion leg)

change plan-machine)
change control-machine)
move executor (get-Hl owner) (get-inv-Hl owner)

(get-body-trans-ratel owner)
(get-body-rotate-ratel owner)

)

sensing contact-sensor)

)

fmethod (get-Hl leg)

get-Hl owner))

fmethod (interlock-confirm leg)

lay add stable-without-p self
if (contact-confirm exchanged-leg)

leg. lisp Wed Mar 30 15:27:59 1988

t

nil))

(defmethod (leg-pos-wrt-body leg)

(leg-pos-wrt-body executor)

)

(defmethod (lift-able leg)

(if (equal (state-name plan-machine) ' eligible-to-lift

)

self
nil))

(defmethod (lift-ok leg)

(lift-ok owner name)

)

(defmethod (lifted leg)

(lifted owner name)

)

(defmethod (new-foothold leg)

(cond ((car foothold-list)
(set-max self)
t)

(t

nil)))

(defmethod (permitted-cell leg)
(t-cell)

(permitted-cell owner t-cell)

)

(defmethod (place-able leg)

(if (equal (state-name plan-machine) 'available-leg)
self
nil))

(defmethod (pro jected-pos leg)

(get-desired-pos executor)

)

(defmethod (select-foothold leg)

; out-list: ((max-foothold max-tkm) (foothold-list) (tkm-list)

)

(let* ((H (get-H6 owner))
(inv-H (get-inv-H6 owner)

)

j. lisp Wed Mar 30 15:27:59 1988 3

(body-trans-rate (get-body-trans-ratelO owner)

)

(body-rotate-rate (get-body-rotate-ratelO owner)

)

(estimated- support -plane
(get-estimated-support-plane owner)

)

(out-list
(find-foothold foothold-finder

H inv-H body-trans-rate body-rotate-rate
estimated-support-plane))

)

(setf foothold (first (first out-list)))
(setf reserved-foothold foothold)
(setf tkm (second (first out-list))

)

(setf reserved-tkm tkm)
(setf foothold-list (second out-list)

)

(setf tkm-list (third out-list))))

fmethod (send-decision leg)
(a-decision)

send-decision plan-machine a-decision)

)

fmethod (send-decision leg rafter)
(a-decision)

if (egual a-decision 'place)
(set-desired-pos executor foothold))

)

fmethod (send-exchange leg)
(a-leg)

setf exchanged-leg a-leg)

)

'fmethod (set-max leg)

[do ((footholds (cdr foothold-list) (cdr footholds))
(tkms (cdr tkm-list) (cdr tkms)

)

(max-foothold (car foothold-list)

)

(max-tkm (car tkm-list)

)

(out-footholds) (out-tkms)

)

((null footholds)
(setf foothold max-foothold)
(setf tkm max-tkm)
(setf foothold-list out-footholds)
(setf tkm-list out-tkms)

)

(cond ((> (car tkms) max-tkm)
(setf max-foothold (car footholds)

)

(setf max-tkm (car tkms))

)

(t

(setf out-footholds
(cons (car footholds) out-footholds)

)

(setf out-tkms
(cons (car tkms) out-tkms)))))

)

fmethod (stable-without-p leg)

stable-without-p owner self)

)

leg. lisp Wed Mar 30 15:27:59 1988

(defmethod (supporting leg)

(cond ((equal (state-name plan-machine) 'planned-contact)
self)
((equal (state-name plan-machine) ' eligible-to-lift)
self)

(t nil))

)

(defmethod (supporting-p leg)

(cond ((equal (state-name control-machine) 'contact)
self)
((equal (state-name control-machine) 'support)
self)

(t nil))

)

(defmethod (terrain-point leg)
(t-cell)

(terrain-point owner t-cell)

)

(defmethod (TKM-limit leg)

(cond ((null tkm)
self)

((< tkm 0.1)
self)

(t

nil)))

(defmethod (TKM-limit-p leg)

(cond ((null tkm-p)
self)

((< tkm-p 0.5)
self)

(t nil)))

(defmethod (update-tkm leg)

(let ((body-trans-rate (get-body-trans-ratelO owner)

)

(body-rotate-rate (get-body-rotate-ratelO owner)

)

(inv-H (get-inv-HIO owner))

)

(setf tkm (find-tkm tkm-calculator
(to-body-transform inv-H foothold)
body-trans-rate body-rotate-rate)

)

)

)

(defmethod (update-tkm-p leg)

g.lisp Wed Mar 30 15:27:59 1988 5

(let ((body-trans-rate-p (get-body-trans-ratel owner)

)

(body-rotate-rate-p (get-body-rotate-ratel owner)

)

(inv-H-p (get-inv-Hl owner))

)

(setf tkm-p (find-tkm tJan-calculator
(to-body-transform inv-H-p foothold)
body-trans-rate-p body-rotate-rate-p))

)

efmethod (with-foothold leg)

(cond (reserved-foothold
(setf foothold reserved-foothold)
(setf tkin reserved-tkm)
self)

(t nil)))

.ad-file.lisp Wed Mar 30 15:28:00 1988 1

J

* Mode: LISP; Package: USER; Syntax: Common-lisp -*
lefun load-files ()

(load "object :packdef")

(load "object :math")

(load "object
:
graph")

(load "object : display")

(load "object : vision")

(load "object :tkm")
(load "object : foothold")
(load "object : sensor")
(load "object : executor")
(load "object : control-machine")
(load "object

:
plan-machine")

(load "object : leg")

(load "object : stability")
(load "object : support-plane")
(load "object : h-calculator")
(load "object : command-regulator")
(load "object : terrain-regulator")
(load "object :body-controller")
(load "object :body")

(load "object : robot ")

(cp: execute-command "set package" "robot-rules")
(load "object :robot4")

)

oad-files)

h.lisp Wed Mar 30 15:28:02 1988 1

-*- Mode: LISP; Package: ROBOT-MATH; Syntax: Common-lisp -*

robot math library

;fun arc-cos (s)

iacos s))

fun atan2 (y x)

if (> (abs x) 0.000001) ; not zero
(if (> x 0)

(atan (/ y x)

)

(+ (atan (/ y x)) (* (signum y) PI)))
(* (signum y) (/ PI 2)))

)

fun col-mul (mat coll col2)
let ((sum 0)

)

(dotimes (i 4)

(setf sum (+ sum (* (aref mat i coll) (aref mat i col2))))

)

urn))

fun counting (a-list)
do ((a-list a-list (cdr a-list)

)

(i (+ i 1)))

((null a-list) i))

)

fun crossprod (vectl vect2)
let* ((xl (first vectl)) (x2 (first vect2)

)

(yl (second vectl)) (y2 (second vect2)

)

(zl (third vectl)) (z2 (third vect2)

)

(x (- (* yl z2) (* y2 zl)))

(y (- (* x2 zl) (* xl z2)))

(z (- (* xl y2) (* x2 yl))))
(list x y z))

)

fun delete-list (a-list b-list) ; delete a-list from b-list
do ((deleting-list a-list (cdr deleting-list)

)

(deleted-list b-list))
((null deleting-list) deleted-list)

(setf deleted-list (remove (car deleting-list)
deleted-list -.test 'equal))))

fmacro dequeue (queue)
(progl (car , queue)

(setf , queue (cdr , queue))))

math. lisp Wed Mar 30 15:28:02 1988

(defun dotprod (vectl vect2)

; No dimension limitation ! !

!

(apply '+ (mapcar '* vectl vect2))

)

(defmacro enqueue (queue-name element)

; globals : queue-name
; Value of recover field of command is a list.
; Two recover command is possible for one sampling-time.
; structure of QUEUE : (first second third ... last)

' (setq , queue-name (nconc , queue-name (list ,element))))

(defmacro empty-queue (queue)
' (setq , queue ' ()))

(defun ident ()

(make-array ' (4 4) : initial-contents
'((1000)

(0 10 0)

(0 10)
(0 1))))

(defun magnitude (a-vector)
(sqrt (dotprod a-vector a-vector))

)

(defun magvect (const vect)
; magvect = const * vect

(mapcar (lambda (a-element)
(* const a-element)

)

vect)

)

(defun matrixadd (mtl mt2)
(let ((mt3 (ident)))

(dotimes (i 4)

(dotimes (j 4)

(setf (aref mt3 i j) (+ (aref mtl i j) (aref mt2 i j)))))

mt3))

(defun matrixinv (mat

)

(let ((px (- (col-mul mat 3)))

(py (- (col-mul mat 13)))
(pz (- (col-mul mat 2 3))

)

(matrix (transpose mat))

)

(setf (aref matrix 3 0) 0) (setf (aref matrix 3 1) 0)
(setf (aref matrix 3 2) 0) (setf (aref matrix 3 3) 1)
(setf (aref matrix 3) px) (setf (aref matrix 1 3) py)
(setf (aref matrix 2 3) pz)
matrix)

)

th. lisp Wed Mar 30 15:28:02 1988

5fun matrixmult (mtl mt2)
(let ((mat (make-array '(4 4)))) ; it defines through 3. (4 is not included)

; will repeat i=0, 1, 2, and 3. (not 4)

initialize to zero

(dotimes (i 4)

(dotimes (j 4)

(setf (aref mat i j) 0)

(dotimes (k 4)

(setf (aref mat i j) (+ (aref mat i j) (* (aref mtl
(aref mt2

mat))

k)

j)))))))

afun nil-list (a-list)
(do ((a-list a-list (cdr a-list)

)

(not-nil nil)

)

((null a-list) (not not-nil))
(if (car a-list)

(setf not-nil t)))

)

pfun normalize-vector (a-vector)
(let ((m (magnitude a-vector))

)

(if (< m 0.0000001)
(list 0)

(magvect (/ 1.0m) a-vector))))

sfun orthogonalization (mt)

; Gram-Schimit orthogonalization process
(let* ((mx

(tx

(xl

(yi

(zl

(ml

(xl

(yi

(zl

(a

(x2

(y2
(z2
(m2

(x2

(y2
(z2

1)) <x3 (aref mt 2))

D) (y3 (aref mt 1 2))

D) (23 (aref mt 2 2))

ident)

)

aref mt 3)) (ty (aref mt 1 3)) (tz (aref mt 2 3))

aref mt 0)) (x2 (aref mt
aref mt 1 0)) (y2 (aref mt 1

aref mt 2 0)) (z2 (aref mt 2

magnitude (list xl yl zl))

)

/ xl ml)

)

/ yl ml)

)

/ zl ml)

)

dotprod (list xl yl zl) (list x2 y2 z2))

)

- x2 (* a xl))

)

- y2 (* a yl)))
- z2 (* a zl))

)

magnitude (list x2 y2 z2))

)

/ x2 m2)

)

7 y2 m2)

)

[/ z2 m2)))

(setf (aref mx 0) xl)
(setf (aref mx 1 0) yl)
(setf (aref mx 2 0) zl)

(setf (aref mx 3) tx)
mx))

(setf (aref mx 1) x2)
(setf (aref mx 1 1) y2)
(setf (aref mx 2 1) z2)

(setf (aref mx 1 3) ty)

(setf (aref mx 2) x3)

(setf (aref mx 1 2) y3)
(setf (aref mx 2 2) z3)

(setf (aref mx 2 3) tz)

efun plane-transform (plane matrix)

Transformed-Plane = Plane * Matrix
plane is defined as ((a b c) d) . (a b c) is unit normal, d is -(distance)

math. lisp Wed Mar 30 15:28:02 1988 4

(let* ((new-a nil)
(new-b nil)
(new-c nil)
(new-d nil)
(old-unit-normal (car plane)

)

(old-d (cadr plane)

)

(old-a (first old-unit-normal)

)

(old-b (second old-unit-normal)

)

(old-c (third old-unit-normal)

)

(mag nil)

)

(aref matrix 0)) (* old-b (aref matrix
[aref matrix 2 0)))

)

[aref matrix 1)) (* old-b (aref matrix
[aref matrix 2 1))))
(aref matrix 2)) (* old-b (aref matrix
(aref matrix 2 2)))

)

(aref matrix 3)) (* old-b (aref matrix
(aref matrix 2 3)) old-d)

)

(setf mag (magnitude (list new-a new-b new-c))

)

(if (< (abs mag) 0.0000001)
(print "Error in PlaneTransform")
(list (list (/ new-a mag) (/ new-b mag) (/ new-c mag)

)

(/ new-d mag))))

)

(setf new-a (
+ (*

(*

old-a (

old-c (

(setf new-b (+ (*

(*

old-a (

old-c (

(setf new-c (+ (*

(*

old-a (

old-c (

(setf new-d (+ (*

(*

old-a (

old-c (

1 0))

1 D)

1 2))

1 3))

(defun plane-distance (plane velocity position)
; Plane (X - Q) N = , straight line X = P + tA.

; t =
(Q - P)N / (AN) if A is normalized then t is signed distance

; if t is infinitive then plane-distance returnes nil.
; plane-distance returns t.

(let* ((A (normalize-vector velocity)

)

(N (first plane)

)

(dis (- (second plane))

)

(Q (magvect dis N)) ; magvect = const * vector
(P position)
(Q_P (vectsub Q P)

)

(AN (dotprod A N)

)

(numerator (dotprod Q_P N))

)

(if (< (abs AN) 0.0000001) ; no crossing
nil ; returns nil
(/ numerator AN)))

)

(defun plane-intersection (a-line a-plane)
; a-line ((direction) (point)) X = P + tA.
; a-plane ((unit-normal) -dist) (X - Q)N = 0.

(let* ((velocity (normalize-vector (first a-line))

)

(position (second a-line)

)

(t-value (plane-distance a-plane velocity position))

)

(if t-value
(vectadd position (magvect t-value velocity)

)

nil))) ; no intersection

(defun plane-normal-distance (a-plane a-point)
; vector-type-plane (abed)
; paul-type-point transpose (x y z 1)

th.lisp Wed Mar 30 15:28:02 1988 5

(let* ((unit-normal (first a-plane)

)

(dis (second a-plane)

)

(vector-type-plane (reverse (cons dis (reverse unit-normal)
))

)

(paul-type-point (reverse (cons 1 (reverse a-point)))))
(dotprod vector-type-plane paul-type-point))

)

efun rotatemat (axis angle) ; array index starts from not 1.

return rotatematrix angle : radian axis : x y or z

(let ((mat (ident)

)

(cosa (cos angle)

)

(sina (sin angle))

)

(case axis
(x-axis

(setf (aref mat 1 1) cosa) (setf (aref mat 1 2) (- sina))
(setf (aref mat 2 1) sina) (setf (aref mat 2 2) cosa)

)

(y-axis
(setf (aref mat 0) cosa) (setf (aref mat 2) sina)
(setf (aref mat 2 0) (- sina)) (setf (aref mat 2 2) cosa)

)

(z-axis
(setf (aref mat 0) cosa) (setf (aref mat 1) (- sina)

)

(setf (aref mat 1 0) sina) (setf (aref mat 1 1) cosa))

)

mat)) ; returns this value.

efun to-body-transform (inv-H point s-wrt-earth)
returns points-wrt-body
(if (listp (first points-wrt-earth)

)

; test multi-points
(do ((points points-wrt-earth (cdr points)) ; multi-points case

(out-points nil)

)

((null points) (reverse out-points)

)

(setf out-points (cons (transform inv-H (car points)) out -points)))

(transform inv-H points-wrt-earth))) ; single point case

efun to-earth-transform (H points-wrt-body)
returns points-wrt-earth
(if (listp (first points-wrt-body)

)

; test multi-points
(do ((points points-wrt-body (cdr points)) ; multi-points case

(out-points nil))

((null points) (reverse out-points)

)

(setf out-points (cons (transform H (car points)) out-points))

)

(transform H points-wrt-body))

)

; single point case

efun transform (mat point) ; array index starts from not 1.

(let ((x (car point)

)

(y (cadr point)

)

(z (if (caddr point) (caddr point) 0)))
(list (+ (* x (aref mat 0)) (* y (aref mat 1)) (* z (aref mat 2))

(aref mat 3))
(+ (* x (aref mat 10)) (* y (aref mat 11)) (* z (aref mat 1 2))

(aref mat 1 3)

)

(+ (* x (aref mat 2 0)) (* y (aref mat 2 1)) (* z (aref mat 2 2))
(aref mat 2 3)))))

efun transmat (x y z)

math. lisp Wed Mar 30 15:28:02 1988

; returns translational marix
(let ((matrix (ident))

)

(setf (aref matrix 3) x)

(setf (aref matrix 1 3) y)

(setf (aref matrix 2 3) z)

matrix)

)

(defun transpose (mat)

(let ((matrix (make-array ' (4 4)))

)

(dotimes (i 4)

(dotimes (j 4)

(setf (aref matrix i j) (aref mat j i)))

)

matrix)

)

(defun unit-crossprod (vectl vect2)
; generate unitnormal vector of vectl X vect2

(let* ((xl (first vectl)) (x2 (first vect2)

)

(yl (second vectl)) (y2 (second vect2)

)

(zl (third vectl)) (z2 (third vect2)

)

(x (- (* yl z2) (* y2 zl)))

(y (- (* x2 zl) (* xl z2)))

(z (- (* xl y2) (* x2 yl)))

(m (sqrt (+ (* x x) (* y y) (* z z)))))

(list (/ x m) (/ y m) (/ z m))))

(defun vectadd (vectl vect2)
; vectsub = vectl + vect2
; no limit in dimension

(mapcar '+ vectl vect2)

)

(defun vectsub (vectl vect2)
; vectsub = vectl - vect2
; no limit in dimension

(mapcar ' - vectl vect2)

)

ckdef.lisp Wed Mar 30 15:28:03 1988 1

I -*- Mode: LISP; Syntax: Common- lisp; Package: USER -*-

efpackage robot-common
(:use)

(: export
legl leg2 leg3 leg4 leg5 leg6
lift place exchange)

)

efpackage robot-math
(:use symbolics-common-lisp)
(: export
vectsub
vectadd
unit-crossprod
transpose
transmat
transform
to-earth-transform
to-body-transform
rotatemat
plane-normal -distance
plane-intersect ion
plane-distance
plane-trans form
orthogonalization
normalize-vector
nil-list
matrixmult
matrixinv
matrixadd
magvect
magnitude
ident
empty-queue
enqueue
dotprod
dequeue
delete-list
crossprod
counting
col-mul
atan2
arc-cos
x-axis y-axis z-axis)

)

lefpackage terrain
(:use robot -math symbolics-common-lisp)
(: export
init-terrain
graph-terrain
display modify
create
permitted-cell get-height in-side-of-whole-terrain terrain-point

graph-asv
init-data
display

joystick
reset
get- joy-value)

)

lefpackage robot

packdef .lisp Wed Mar 30 15:28:03 1988 2

(:use robot-common robot -math symbolics-common-lisp pl-user)

)

(defpackage leg
(: use robot-common robot -math terrain robot symbolics-common-lisp)
(: export
leg

init
leg-name
leg- foothold
leg-tkm
send-exchange
do-planned-motion
simulation-output
leg-pos-wrt-body
lift-able
place-able
supporting
support ing-p
send-decision
select -foothold
update-tkm
update-tkm-p
new- foothold
tkm-limit
with- foothold
tkm-limit-p
))

(defpackage body
(:use robot-common robot-math leg symbolics -common-lisp)
(: export
body

init
get-Hl
get-inv-Hl
get-H6
get-inv-H6
get-inv-HIO
get -body-trans-ratel
get -body- rot ate- rat el
get-body-trans-ratelO
get-body-rotate-ratelO
get -estimated-support-plane
stable
calculate-mot ion
more-stable
slow-down
speed-up
near-dead-lock-test
stable-p
stable-p-m
stable-m
modify-command
modify-command-p
re store-command
restore-command-p
stop-motion
restore-mot ion

))

ckdef.lisp Wed Mar 30 15:28:03 1988 3

efpackage vision
(ruse robot-common robot-math leg robot terrain symbolics-common-lisp)
(: export
vis ion-system

init
scanning
permitted-cell
terrain-point)

)

efpackage robot
(:use robot-common robot -math terrain leg body vision symbolics-common-lisp pl-user)
(: export
create-terrain
kill-terrain
inits
graphical_display
execute_planned_motion
send_decision
stable_p
max_sm_leg
stable_p_m
modify_command
stable_without
smallest_tkm_leg
update_robot_status
read_joystick
restore_command
slow_down_robot
speed_up_robot
leg_with_new_foothold
at_tkm_limit
do_recovery
has_more_tkm

get-Hl
get-inv-Hl
get-H6
get-inv-H6
get-inv-HIO
get -body-trans-ratel
get -body- rot ate-rat el
get-body-trans-ratelO
get -body-rot ate-rat el
get-estimated- support -plane
lift-ok
lifted
stable-without-p
terrain-point
))

lefpackage robot-rules
(:use prolog-global robot-common robot symbolics-common-lisp))

th-trans.lisp Wed Mar 30 15:28:04 1988 1

s : set -logical -pathname-host "object"
translations '

(
("object :**;*.*.*" "sym4 : >kwak>ob ject-wp>* .*.*")))

Lan-machine . lisp Wed Mar 30 15:28:06 1988 1

. . _*_ Mode: LISP; Syntax: Common-lisp; Package: LEG -*-

**

plan-state flavor definition

**

iefflavor plan-state ((decision nil) (observation nil) (command nil)
(condition nil)

)

(state)
initable-instance-variables)

iefmethod (generate-command plan-state)

command)

iefmethod (change plan-state)
(given-decision observed-state given-condition)

(cond ((and decision (listp decision)

)

(cond ((equal given-decision (first decision)

)

(first next-state)

)

((equal given-decision (second decision)

)

(second next-state)

)

(t self)))
(condition
(if (and (equal given-condition condition)

(equal observed-state observation)

)

next-state
self)

)

(t

(cond ((equal observed-state observation)
next-state)

((equal given-decision decision)
next-state)
(t self)))))

**

plan-state-machinie flavor definition

**

iefflavor plan-state-machine ((decision nil) (observation nil)

(condition nil) (lift-ready-flag nil)
control-machine)

(state-machine)
: initable-instance-variables)

iefmethod (init plan-state-machine)
(leg-name)

(if (member leg-name ' (legl leg4 leg5)

)

(init-plan-machine self ' eligible-to-lift

)

plan-machine . lisp Wed Mar 30 15:28:06 1988

(init-plan-machine self 'available-leg))
(setf control-machine (leg-control-machine owner))

)

(defmethod (init-plan-machine plan-state-machine)
(a- state -name)

(let (available-leg planned-contact eligible-to-lift
planned-lift actual-lift planned-exchange)

(setf actual-lift
(make-instance 'plan-state

:name 'actual-lift
: observation 'ready
: command ' recover-command)

)

(setf planned-lift
(make-instance 'plan-state

:name 'planned-lift : condition 'stable-without
: observation 'support
: next-state actual-lift))

(setf planned-exchange
(make-instance 'plan-state

: name 'planned-exchange : condition ' interlock-confirm
: observation 'support
:next-state actual-lift))

(setf eligible-to-lift
(make-instance 'plan-state

:name 'eligible-to-lift
:decision ' (lift exchange)
:next-state (list planned-lift planned-exchange))

)

(setf planned-contact
(make-instance 'plan-state

:name 'planned-contact : observation 'contact
: command ' deploy-command
:next-state eligible-to-lift))

(setf available-leg
(make-instance 'plan-state

:name 'available-leg : decision 'place
:next-state planned-contact))

(set-next-state actual-lift available-leg)

(setf state (cond ((equal a-state-name (state-name available-leg)

)

available- leg)
((equal a-state-name (state-name planned-contact)

)

planned-contact

)

((equal a-state-name (state-name eligible-to-lift)

)

eligible-to-lift)
((equal a-state-name (state-name planned-lift)

)

planned-lift)
((equal a-state-name (state-name planned-exchange)

)

planned-exchange)
((equal a-state-name (state-name actual-lift)

)

actual-lift))

)

)

)

(defmethod (change plan-state-machine : before)

(setf observation (state-name control-machine)

)

(cond ((and (equal (state-name state) 'planned-exchange)
(interlock-confirm owner)
(stable-without-p owner)
(lift-ok owner)

)

•n-machine.lisp Wed Mar 30 15:28:06 1988

(setf lift-ready-flag t)

(setf condition ' interlock-conf irm)

)

((and (equal (state-name state) 'planned-lift)
(stable-without-p owner)
(lift-ok owner)

)

(setf lift-ready-flag t)

(setf condition 'stable-without))
(t

(setf condition nil)
(setf lift-ready-flag nil)))

lefmethod (change plan-state-machine)

(setf state (change state decision observation condition))

)

efmethod (change plan-state-machine : after)

(send-command control-machine
(generate-command state)

)

(if (and lift-ready-flag
(equal (state-name self) 'actual-lift))

(lifted owner))

)

lefmethod (send-decision plan-state-machine)
(a-decision)

(setf decision a-decision)

)

Dbot.lisp Wed Mar 30 15:28:08 1988 1

. _*_ Mode: LISP; Package: ROBOT; Syntax: Common-lisp; Base: 10 -*

lefvar asv)

robot flavor definition

t***

ief flavor robot (legs body vision-system joystick
(lift-able-legs nil)
(place-able-legs nil) (supporting-legs nil)
(supporting-p-legs nil)
(joy-command ' (0 0)) lift-queue lift-flag)

:initable-instance-variables)

letf asv (make-instance 'robot))

lefmethod (init robot)

(init-data graph-asv)
(empty-queue lift-queue)
(setf lift-flag t)

(setf joystick (make-instance ' joystick)

)

(reset joystick)
(setf vision-system (make-instance 'vision-system : owner self))
(init vision-system)
(let ((H))

(setf body (make-instance 'body :owner self))
(setf H (init body)

)

(setf legs (list
(make-instance 'leg :name ' legl : owner self)
(make-instance 'leg :name ' leg2 : owner self)
(make-instance 'leg :name ' leg3 : owner self)
(make-instance 'leg : name ' leg4 : owner self)
(make-instance 'leg : name ' leg5 : owner self)
(make-instance 'leg :name ' leg6 : owner self)

))

(mapcar (lambda (a-leg) (init a-leg H)) legs)

)

)

lefmethod (find-lift-able-legs robot)

(delete nil (mapcar 'lift-able legs)))

lefmethod (find-place-able-legs robot)

(delete nil (mapcar 'place-able legs)))

lefmethod (find-supporting-legs robot)

robot. lisp Wed Mar 30 15:28:08 1988 2

(delete nil (mapcar 'supporting legs)))

(defmethod (find-supporting-p-legs robot)

(delete nil (mapcar ' supporting-p legs)))

(defmethod (get-body-rotate-ratel robot)

(get-body-rotate-ratel body)

)

(defmethod (get-body-rotate-ratelO robot)

(get-body-rotate-ratelO body)

)

(defmethod (get-body-trans-ratel robot)

(get-body-trans-ratel body)

)

(defmethod (get-body-trans-ratelO robot)

(get-body-trans-ratelO body)

)

(defmethod (get-estimated-support-plane robot)

(get-estimated-support-plane body)

)

(defmethod (get-Hl robot)

(get-Hl body)

)

(defmethod (get-H6 robot)

(get-H6 body)

)

(defmethod (get-inv-Hl robot)

(get-inv-Hl body)

)

(defmethod (get-inv-H6 robot)

(get-inv-H6 body)

)

jbot.lisp Wed Mar 30 15:28:08 1988

iefmethod (get-inv-HIO robot)

(get-inv-HIO body)

)

iefmethod (lift-ok robot)
(leg-name)

(cond (lift-flag
(cond ((egual leg-name (leg-name (first lift-queue)

)

(setf lift-flag nil)
t)

(t

nil)))
(t nil)))

iefmethod (lifted robot)
(leg-name)

(if (equal leg-name (leg-name (first lift-queue))

)

(dequeue lift-queue)
(print (list "error in lifting" leg-name)))

)

iefmethod (permitted-cell robot)
(t-cell)

(permitted-cell vision-system t-cell)

)

iefmethod (scanning robot)

(scanning vision-system)

)

iefmethod (stable-without -p robot)
(a-leg)

(stable-p body
(remove a-leg supporting-p-legs))

)

iefmethod (terrain-point robot)
(t-cell)

(terrain-point vision-system t-cell)

)

**

terrain interface functions

iefun create-terrain ()

(init-terrain)

)

robot. lisp Wed Mar 30 15:28:08 1988

(defun kill-terrain ()

(zl-user :kill-all-windows)

)

**

prolog interface robot methods

(defmethod (at -tkm-limit robot)

(let ((limit-leg
(car (delete nil

(mapcar 'TKM-limit lift-able-legs)))))
(setf supporting-legs (remove limit-leg

supporting-legs)

)

(setf lift-able-legs (remove limit-leg
lift-able-legs)

)

limit-leg)

)

(defmethod (check-stability-p robot)

(stable-p-m body supporting-p-legs (first lift-queue)

)

(defmethod (check-tkm-limit-p robot)

(delete nil
(mapcar 'TKM-limit-p supporting-p-legs)))

(defmethod (do-recovery robot)

(car
(delete nil

(mapcar ' with-foothold place-able-legs))))

(defmethod (execute-planned-motion robot]

(mapcar 'do-planned-motion legs))

(defmethod (graphical-display robot)

(display graph-asv (get-Hl body)
(mapcar ' leg-pos-wrt-body legs))

)

:>bot.lisp Wed Mar 30 15:28:08 1988

lefmethod (ha 3 -more- t km robot)
(legl leg2)

(> (leg-tkm legl)
(leg-tkm leg2)))

iefmethod (leg-with-new-foothold robot)

return a-leg with new-foothold.
(do ((new-foothold-flags (mapcar 'new-foothold place-able-legs)

(mapcar 'new-foothold place-able-legs))
(a-leg nil))

((or (nil-list new-foothold-flags)
a-leg)

(if a-leg a-leg nil)

)

(setf a-leg (max-sm-leg self nil)))

)

iefmethod (max-sm-leg robot)
(a-leg)

(if place-able-legs
(do ((legs (cdr place-able-legs) (cdr legs)

)

(largest-leg (car place-able-legs) largest-leg)
(temp-support-legs (remove a-leg supporting-legs)))

((null legs)
(if (and

(leg-foothold largest-leg)
(stable body (cons largest-leg temp-support-legs))

)

largest-leg
nil))

(if (more-stable body temp-support-legs
(car legs) largest-leg)

(setf largest-leg (car legs)))

)

nil))

defmethod (modify-command robot)

I (modify-command body)

)

defmethod (wait-for-lift robot)

(delete nil
(mapcar 'lift-not-done supporting-p-legs))

)

defmethod (read- joystick robot)

(let ((joy-value (get- joy-value joystick)))
(if (fourth joy-value)

(modify graph-terrain)

)

(setf joy-command
(reverse (cdr (reverse joy-value)))))

)

defmethod (restore-command robot)

robot. lisp Wed Mar 30 15:28:08 1988

(restore-command body)

)

(defmethod (send-decision robot)
(legl leg2 a-decision)

(cond ((equal a-decision 'exchange)
(enqueue lift-queue legl)

)

((equal a-decision 'lift)
(enqueue lift-queue legl))

)

(cond ((equal a-decision 'exchange)
(send-decision legl a-decision)
(send-decision leg2 'place)
(send-exchange legl leg2)

)

(t

(send-decision legl a-decision)))

)

(defmethod (smallest-tkm-leg robot)

; select smallest-TKM-leg
; tkm is nil or positive

(do ((legs (cdr lift-able-legs) (cdr legs)

)

(smallest-leg (car lift-able-legs)

)

(smallest-tkm nil) (tkm nil))

((null legs) smallest-leg)
(setf smallest-tkm (if (leg-tkm smallest-leg)

(leg-tkm smallest-leg) -1000))
(setf tkm (if (leg-tkm (car legs)

)

(leg-tkm (car legs)) -1000))
(if (> smallest-tkm tkm) (setf smallest-leg (car legs))

)

(if (and (equal smallest-tkm -1000) (equal tkm -1000))
"Error : more than one legs are out of kinematic limit"))

)

(defmethod (slow-down-robot robot)

(slow-down body)

)

(defmethod (speed-up-robot robot)

(speed-up body)

)

(defmethod (stable robot)

(stable body supporting-legs)

)

(defmethod (stable_m robot)

(stable-m body supporting-legs)

)

(defmethod (stable-without robot)
(a-leg)

(stable body (remove a-leg supporting-legs))

)

sbot.lisp Wed Mar 30 15:28:08 1988

iefmethod (update-robot-status robot)

(scanning self)
(setf lift-flag t)

(setf lift-able-legs (find-lift-able-legs self)

)

(setf place-able-legs (find-place-able-legs self)

)

(setf supporting-legs (find-supporting-legs self)

)

(setf supporting-p-legs (find-supporting-p-legs self)

)

(mapcar ' update-tkm-p supporting-p-legs)
(if (check-tkm-limit-p self)

(stop-motion body (check-tkm-limit-p self)

)

(restore-motion body)

)

(if (not (check-stability-p self)

)

(modify-command-p body)
(restore-command-p body)

)

(calculate-motion body joy-command legs)
(mapcar 'select-foothold place-able-legs)
(mapcar 'update-tkm supporting-legs))

:***

prolog interface functions

**

defun at_tkm_limit ()

(at-tkm-limit asv)

)

defun do_recovery ()

(do-recovery asv)

)

defun execute_planned_motion ()

(execute-planned-motion asv)

)

defun graphical_display ()

(graphical-display asv)

)

defun has_more_tkm (legl leg2)
(has-more-tkm asv legl leg2)

)

robot. lisp Wed Mar 30 15:28:08 1988

(defun inits ()

(init asv)

)

(defun leg_with_new_foothold ()

(leg-with-new-foothold asv))

(defun max_sm_leg (a-leg)
(max-sm-leg asv a-leg)

)

(defun modify_conimand ()

(modify-command asv)

)

(defun read_joystick ()

(read- joystick asv)

)

(defun restore_command (

)

(restore-command asv)

)

(defun send_decision (legl leg2 a-decision)
(send-decision asv legl leg2 a-decision)

)

(defun smallest_tkm_leg ()

(smallest-tkm-leg asv)

)

(defun slow_down_robot (

)

(slow-down-robot asv)

)

(defun speed_up_robot ()

(speed-up-robot asv)

)

(defun stable_p()
(stable asv)

)

(defun stable_p_m()
(stable m asv)

)

(defun stable_without (a-leg)
(stable-without asv a-leg)

)

bot.lisp Wed Mar 30 15:28:08 1988

lefun update_robot_status (

)

(update-robot-status asv)

)

snsor.lisp Wed Mar 30 15:28:09 1988 1

; ;
-*- Mode: LISP; Syntax: Common-lisp; Package: LEG -*-

sensor flavor definition

ief flavor sensor (state owner)

:initable-instance-variables)

contact-sensor flavor definition

defflavor contact-sensor (

)

(sensor)
: initable-instance-variables)

iefmethod (init contact-sensor)
(leg-name)

(setf state (sensing self))

)

defmethod (contact-p sensor)

state)

defmethod (sensing sensor)

simulation purpose
(setf state

(let* ((leg-pos-wrt-body (leg-pos-wrt-body
(leg-executor owner))

)

(leg-pos-wrt -earth
(to-earth-transform (get-Hl owner) leg-pos-wrt-body)

)

(x-y-pos (list (first leg-pos-wrt-earth)
(second leg-pos-wrt-earth))

)

(leg-height (third leg-pos-wrt-earth))

)

(if (< leg-height (+ 0.07 (third
(terrain-point owner x-y-pos)))

)

t

nil))))

iability.lisp Wed Mar 30 15:28:11 1988 1

. _*_ Mode: LISP; Syntax: Common-lisp; Package: BODY -*-

-it**

stability-calculator flavor definition

t **

iefflavor stability-calculator (convex-hull-order
safety-margin
safety-margin-p
large- safety-margin
large- safety-margin-p
recovery-vector
recovery-vector-p
owner)

:initable-instance-variables)

lefmethod (init stability-calculator)

(setf convex-hull-order ' (leg2 leg4 leg6 leg5 leg3 legl)

)

(setf safety-margin 0.4)
(setf safety-margin-p 0.2)
(setf large-safety-margin 0.5)
(setf large-safety-margin-p 0.4)
(setf recovery-vector ' (0 0)

)

i (setf recovery-vector-p ' (0 0)))

lefmethod (get-recovery-vector stability-calculator)

recovery-vector)

lefmethod (get-recovery-vector-p stability-calculator)

recovery-vector-p)

lefmethod (convert-to-recovery-vector stability-calculator)
(stability-vector)

(let ((sm (first stability-vector)

)

(vect (second stability-vector))

)

(cond ((< sm 0)

nil)

((< sm 0.1)
(magvect (/ 1 sm) vect)

)

(t

(magvect (/ 0.1 (* sm sm)) vect)))))

lefmethod (more-stable stability-calculator)
(supporting-legs H legl leg2)

;

(let ((stabilityl (calculate-stability self
(cons legl supporting-legs) H)

)

(stability2 (calculate-stability self
(cons leg2 supporting-legs) H)))

(if (> stabilityl stability2)
t

stability. lisp Wed Mar 30 15:28:11 1988

nil)))

(defmethod (stable-m stability-calculator)
; predict H <= H10

(supporting-legs H)

(let ((stability-vector
(get-stability self supporting-legs H))

)

(cond (
(>= (first stability-vector)

large-safety-margin)
t)

(t

(if (>= (first stability-vector) safety-margin)
(setf recovery-vector

(convert-to-recovery-vector self stability-vector)

)

(setf recovery-vector ' (0 0))

)

nil))))

(defmethod (stable-p-m stability-calculator)
; present H <= HI

(supporting-p-legs H)

(let* ((stability-vector
(get-stability self supporting-p-legs H))

(st-margin (first stability-vector))

)

(cond (
(>= st-margin

large-safety-margin-p)
t)

(t

(setf recovery-vector-p
(convert-to-recovery-vector self stability-vector)

)

; (if (< st-margin safety-margin-p)
; (print (list ' st-p st-margin)))

nil))))

(defmethod (stable stability-calculator)
(supporting-legs H10)

(if (>= (calculate-stability self
supporting-legs H10)

safety-margin)
t

nil))

(defmethod (stable-p stability-calculator)
(supporting-p-legs HI)

(if (>= (calculate-stability self
supporting-p-legs HI)

safety-margin-p)
t

nil))

(defmethod (calculate-stability stability-calculator)
(supporting-legs H)

(first (get-stability self supporting-legs H))

)

ability. lisp Wed Mar 30 15:28:11 1988

afmethod (get-stability stability-calculator)
(supporting-legs H)

(if (>= (counting supporting-legs) 3)

(measure-distance (center-of-gravity H)

(convex-hull-points
(supporting-point s

(find-order self supporting-legs)))

)

' (-100.0 (0 0)))

)

efun center-of-gravity (H)

Denter-of-body is represented wrt earth coordinate,
(let ((x (aref H 3)

)

(y (aref H 1 3)))
(list x y))

)

senter-of-body can be changed in future.

5fun convex-hull-points (points)
point is a list (x y z) . For a time being, only x,y are used,
nath lib : delete-list
(if (> (counting points) 3)

(let* ((boundary-points (out-side points)

)

(remaind (delete-list boundary-points points))

)

(cond (remaind (convex-hull-points boundary-points)

)

(T boundary-points))

)

points)) ; minimum points (3) are reached.

sfmethod (find-order stability-calculator)
(legs)

jlobals : leg-name
Eind ordered leg-names for calculating convex-hull-points
sonvex-hull-order (This has only ready position for leg names)
(let* ((ordered-legs nil)

)

(empty-queue ordered-legs)
(dolist (a-leg-name convex-hull-order)

(dolist (a-leg legs)
(if (equal a-leg-name (leg-name a-leg)

)

(cons a-leg ordered-legs)))

)

(reverse ordered-legs))

)

(enqueue ordered-legs a-leg)))

)

ordered-legs)

)

5fun find-slope (first-point second-point)
(let ((del-x (- (car second-point) (car first-point))

)

(del-y (- (cadr second-point) (cadr first-point)))

)

(if (> (abs del-x) 0.0000001)
(/ del-y del-x)
nil)))

»fun infinite-case (x a-line)
(list x

(+ (* (car a-line) x) (cadr a-line))))

stability. lisp Wed Mar 30 15:28:11 1988

(defun intersection-point (a-line b-line)

; Returns list (x y) . Line is list (slope crossing-point-of-axis)
(cond ((null (car a-line)) (infinite-case (cadr a-line) b-line)

)

((null (car b-line)) (infinite-case (cadr b-line) a-line)

)

(t (normal-case a-line b-line))))

(defun in-side-of-convex-hull (center-point first-points second-points)
(do* ((first-points first-points (cdr first-points)

)

(second-points second-points (cdr second-points)

)

(in-side-flag T)

)

((null first-points) in-side-flag)
(if (test-out-side (car first-points) center-point (car second-points)

)

(setf in-side-flag nil)))

)

(defun line (slope point)
(if slope

(list slope (- (second point) (* slope (first point))))
(list slope (first point)))

)

; When slope is infinitive, return with x-axis crossing point instead of
; y-axis crossing point.

(defun measure-distance (center-point convex-points)
; convex-points is a list of points
; point is a list (x y z) .

(let* ((first-points convex-points)
(second-points (append (cdr convex-points)

(list (car first-points))))

)

(if (in-side-of-convex-hull center-point first-points second-points)
(start-measure center-point first-points second-points)
' (-10.0 (0 0)))))

; center-of-gravity is out-side of support pattern

(defun normal-case (a-line b-line)
(let* ((al (car a-line))

(bl (cadr a-line)

)

(a2 (car b-line)

)

(b2 (cadr b-line)

)

(x (/ (- bl b2) (- a2 al))

)

(y (+ (* al x) bl)))

(list x y)))

(defun out-side (points)

; this function does not change the order of points except deletion,
(do* ((first-points points (cdr first-points))

(second-points (reverse (cons (car points) (reverse (cdr points))))

(cdr second-points)

)

(third-points (reverse (cons (car second-points)
(reverse (cdr second-points)))

)

(cdr third-points)

)

ability. lisp Wed Mar 30 15:28:11 1988 5

(out-points nil out-points)

)

((null first-points)
(let ((return-points nil)

)

(empty-queue return-points)
(dolist (a-point points)

(if (member a-point out-points)
(enqueue return-points a-point))

)

return-points)

)

(if (test-out-side (car first-points) (car second-points)
(car third-points)

)

(setf out-points (cons (car second-points) out-points))))

)

;fun point-distance (center-point first-point second-point)
returns distance and vector between cross-pt and center-pt
(let* ((slopel (find-slope first-point second-point)

)

(slope2 (right-angle slopel))
(cross-pt (intersection-point (line slopel first-point)

(line slope2 center-point))

)

(del-vect (vectsub center-point cross-pt)

)

(distance (magnitude del-vect))

)

(list distance (list (first del-vect) (second del-vect) 0.0))))

»fun right-angle (slope)
(cond ((null slope) 0.0) ; infinitive input slope

((< (abs slope) 0.0000001) nil) ; zerop slope
(t (/ (- 1) slope))))

»fun start -measure (center-point first-points second-points)
(do* ((first-points first-points (cdr first-points)

)

(second-points second-points (cdr second-points)

)

(min-distance 10000.0 min-distance) ; infinte dummy number 10000.0
(min-direction nil) (dis-dir nil))

((null first-points) (list min-distance min-direction)

)

(setf dis-dir (point-distance center-point
(car first-points) (car second-points))

)

(cond ((< (first dis-dir) min-distance)
(setf min-distance (first dis-dir)

)

(setf min-direction (second dis-dir)))))

)

ifun supporting-points (legs)
(let ((points)

)

(empty-queue points)
(do ((legs legs (cdr legs)

)

(a-pos nil)

)

((null legs)
points)

(setf a-pos (leg-foothold (car legs))

)

(if a-pos
(enqueue points a-pos))))

)

>fun test-out-side (first-point second-point third-point)
(let* ((a (- (cadr first-point) (cadr third-point)))

(b (- (car third-point) (car first-point))

)

(c (- (+ (* a (car third-point)) (* b (cadr third-point)))))

stability. lisp Wed Mar 30 15:28:11 1988

(decision (+ (* a (car second-point))
(* b (cadr second-point)

)

c)))
(if (>= decision 0.0)

T

nil)))

ipport -plane. lisp Wed Mar 30 15:28:13 1988 1

. _*_ Mode: LISP; Syntax: Common-lisp; Package: BODY -*-

**

support -plane-estimator flavor definition

**

ief flavor support-plane-estimator (owner)

)

iefmethod (init support-plane-estimator)

)

Iefmethod (get-plane support-plane-estimator)
(legs)

(let* ((footholds-for-estimation (get-footholds legs)

)

(constants (get-constants footholds-for-estimation))

)

(make-plane-from-coef ficient constants))

)

c**

support-plane-estimator
.
get-plane

r***

iefun add-points (points)
returns a list (number-of-points sum-of-points)

.

(do ((points points (cdr points)

)

(i (+ i 1))
(sum-vect ' (0 0))

)

((null points) (list i sum-vect)

)

(setf sum-vect (vectadd (car points) sum-vect)))

)

iefun average-point (points)
(let* ((num-&-sum-vect (add-points points)

)

(number-of-points (first num-&-sum-vect)

)

(sum-vect (second num-&-sum-vect))

)

(if (> number-of-points 0)

(magvect (/ 1 number-of-points) sum-vect)
(print "Error in finding average-point of estimate plane"))))

iefun get-aO (bar-point al)

(let* ((x-bar (first bar-point)

)

(z-bar (third bar-point)
)

)

(- z-bar (* al x-bar)
))

)

support-plane. lisp Wed Mar 30 15:28:13 1988

(defun get-al (points bar-point common-denominator)
; returns al which is sum in this function,

(do* ((points points (cdr points)

)

(sum 0)

(x nil) (x-bar (first bar-point)

)

(z nil) (z-bar (third bar-point))

)

((null points) (/ sum common-denominator)

)

(setf x (first (car points))

)

(setf z (third (car points))

)

(setf sum (+ sum (* (- x x-bar) (- z z-bar)))))

)

(defun get-a2 (points bar-point common-denominator)
; returns a2 which is sum in this function,

(do* ((points points (cdr points)

)

(sum 0)

(x nil) (x-bar (first bar-point))
(y nil) (y-bar (second bar-point)))

((null points) (/ sum common-denominator)

)

(setf x (first (car points)))
(setf y (second (car points))

)

(setf sum (+ sum (* (- x x-bar) (- y y-bar))))))

(defun get-a3 (bar-point a2)
(let* ((x-bar (first bar-point)

)

(y-bar (second bar-point)))
(- y-bar (* a2 x-bar))))

(defun get-a4 (points aO al a2 a3)
(let* ((number-of-points (counting points)

)

(yr (get-yr points a2 a3)

)

(zr (get-zr points aO al))

(yr-bar (get-yr-bar yr number-of-points)

)

(zr-bar (get-zr-bar zr number-of-points)))

(do ((yr yr (cdr yr)

)

(zr zr (cdr zr)

)

(numerator 0) (a-yr 0) (a-zr 0)

(denominator 0)

)

((null yr) (/ numerator denominator)

)

(setf a-yr (first yr)

)

(setf a-zr (first zr)

)

(setf numerator (+ numerator (* (- a-yr yr-bar) (- a-zr zr-bar)))

)

(setf denominator (+ denominator (* (- a-yr yr-bar) (- a-yr yr-bar)))))))

(defun get-common-denominator (points bar-point)
(do* ((points points (cdr points)

)

(sum 0)

(x nil)
(x-bar (first bar-point))

)

((null points) sum)
(setf x (first (car points))

)

(setf sum (+ sum (* (- x x-bar) (- x x-bar)))))

)

pport-plane. lisp Wed Mar 30 15:28:13 1988 3

efun get-constants (points)
(let* ((bar-point (average-point points)

)

(common-denominator (get-common-denominator points bar-point)

)

(al (get-al points bar-point common-denominator)

)

(a2 (get-a2 points bar-point common-denominator)

)

(aO (get-aO bar-point al)

)

(a3 (get-a3 bar-point a2))

(a4 (get-a4 points aO al a2 a3)))

(list aO al a2 a3 a4)))

efun get-footholds (legs)
(do* ((legs legs (cdr legs)

)

(footholds nil)
(a-leg nil)

)

((null legs) footholds)
(setf a-leg (car legs)

)

(if (leg-foothold a-leg)
(setf footholds (cons (leg-foothold a-leg) footholds))))

)

efun get-yr (points a2 a3)

(do* ((points points (cdr points)

)

(yr nil)
(x nil)

(y nil))

((null points) (reverse yr)

)

(setf x (first (car points))

)

(setf y (second (car points))

)

(setf yr (cons (- y a2 (* a3 x)) yr)))

)

sfun get-yr-bar (yr number-of-points)
(do ((yr yr (cdr yr))

(yr-bar 0)

)

((null yr) (/ yr-bar number-of-points)

)

(setf yr-bar (+ yr-bar (first yr))))

)

sfun get-zr (points aO al)

(do* ((points points (cdr points)

)

(zr nil)
(x nil)
(z nil))

((null points) (reverse zr)

)

(setf x (first (car points))

)

(setf z (third (car points))

)

(setf zr (cons (- z aO (* al x)) zr)))

)

5fun get-zr-bar (zr number-of-points)
(do ((zr zr (cdr zr)

)

(zr-bar 0)

)

((null zr) (/ zr-bar number-of-points)

)

(setf zr-bar (+ zr-bar (first zr))))

)

support-plane . lisp Hed Mar 30 15:28:13 1988

(defun make-plane-from-coef ficient (constants)
(let* ((aO (first constants))

(al (second constants)

)

(a2 (third constants)

)

(a3 (fourth constants)

)

(a4 (fifth constants)

)

(a (- (* a4 a3) al))
(b (- a4))
(c 1)

(d (- (* a2 a4) aO)

)

(unit-normal (normalize-vector (list a b c))

)

(dis (/ d (magnitude (list a b c))))

)

(list unit-normal dis))

)

jrrain-regulator.lisp Wed Mar 30 15:28:15 1988 1

;
; -*- Mode: LISP; Syntax: Common-lisp; Package: BODY -*-

**

terrain-regulator flavor definition

**

defflavor terrain-regulator (body-rotate-rate-x body-rotate-rate-y
body-trans-rate-z old-body- rot ate-rate-x
old-body- rot ate- rate-y old-body-trans-rate-z
gain min-height max-height
etal eta2 min-eta max-eta)

(regulator)
: : initable-instance-variables)

iefmethod (init terrain-regulator)

(setf gain 5)

(setf min-eta 0.0000001)
(setf max-eta 0.4363)
(setf min-height 4.4)
(setf max-height 5.4)
(setf etal min-eta)
(setf eta2 0.5236)

degree
25 degrees
4.4 feet
5.4 feet

degree
30 degree

(setf body-rotate-rate-x 0.0)
(setf body-rotate-rate-y 0.0)
(setf body-trans-rate-z 0.0)
(list body-rotate-rate-x body-rotate-rate-y body-trans-rate-z)

)

defmethod (do-terrain-regulation terrain-regulator)
(k-gamma-delta-height

)

k-gamma-delta-height is ((k.x k.y k.z) gamma delta-height),
(let* ((k (first k-gamma-delta-height)

)

(gamma (second k-gamma-delta-height)

)

(delta-height (third k-gamma-delta-height)

)

(body-rotate-rate-x-n (* gain (first k) gamma)

)

(body-rotate-rate-y-n (* gain (second k) gamma)

)

(body-trans-rate-z-n (* gain delta-height))

)

(setf body-rotate-rate-x
(limitor self

(filter self body-rotate-rate-x-n body-rotate-rate-x)
0.1))

(setf body-rotate-rate-y
(limitor self

(filter self body-rotate-rate-y-n body-rotate-rate-y)
0.1))

(setf body-trans-rate-z
(limitor self

(filter self body-trans-rate-z-n body-trans-rate-z)
1)))

(list body-rotate-rate-x body-rotate-rate-y body-trans-rate-z)

)

defmethod (eta-function terrain-regulator)

terrain-regulator. lisp Wed Mar 30 15:28:15 1988

(eta)

(let ((slope (/ (- max-eta min-eta) (- eta2 etal)))

)

(+ min-eta (* slope (- eta etal)))))

(defmethod (get-k-gamma-by-slope terrain-regulator)
(plane H)

(let* ((plane-rpt-body (plane-transform plane H)

)

(height (cadr plane-rpt-body)

)

(eta (arc-cos (third (car plane)))

)

(k-gamma-desired-height nil)

)

(setf k-gamma-desired-height
(cond ((< eta etal) (low-slope self plane)

)

((< eta eta2) (mid-slope self eta plane H)

)

(T (high-slope self plane H)))

)

(list (first k-gamma-desired-height)
(second k-gamma-desired-height)
(- (third k-gamma-desired-height) height)))

)

(defmethod (height-function terrain-regulator)
(eta)

(let ((slope (/ (- max-height min-height) (- eta2 etal))))
(- max-height (* slope (- eta etal)))))

(defmethod (high-slope terrain-regulator)
(plane H)

(let* ((plane-unit-normal (first plane))
(a (first plane-unit-normal)

)

(b (second plane-unit-normal)

)

(m (sqrt (+ (* a a) (* b b))))

(desired-eta max-eta)
(desired-height min-height)
(desired-body-plane (list (list (* (/ a m) (sin desired-eta)

)

(* (/ b m) (sin desired-eta))
(cos desired-eta)) 0.0))

(desired-body-plane-in-body (plane-transform desired-body-plane H)

)

(unit-normal-body-plane (first desired-body-plane-in-body)

)

(al (first unit-normal-body-plane)

)

(bl (second unit-normal-body-plane))

(cl (third unit-normal-body-plane))

(ml (sqrt (+ (* al al) (* bl bl)))

)

(k (if (= ml 0)

(list 0)

(list (/ (- bl) ml) (/ al ml) 0)))
(gamma (arc-cos cl))

)

(list k gamma desired-height))

)

(defmethod (limitor terrain-regulator)
(vel max-vel)

(if (>= (abs vel) max-vel)
(if (> vel 0)

max-vel
(- max-vel)

)

vel))

arrain-regulator.lisp Wed Mar 30 15:28:15 1988

iefmethod (low-slope terrain-regulator)
(plane)

(let* ((unit-normal (first plane))
(a (first unit-normal)

)

(b (second unit-normal)

)

(c (third unit-normal)

)

(m (sqrt (+ (* a a) (* b b))))

(k.a nil)
(k.b nil)
(gamma (arc-cos c))

(desired-height max-height)

)

(if (= m 0.0)
(setf k.a 0.0 k.b 0.0)
(setf k.a (/ (- b) m) k.b (/ a m))

)

(list (list k.a k.b 0.0) gamma desired-height)))

iefmethod (mid-slope terrain-regulator)
(eta plane H)

(let* ((plane-unit-normal (first plane)

)

(a (first plane-unit-normal)

)

(b (second plane-unit-normal)

)

(m (sqrt (+ (* a a) (* b b))))

(desired-eta (eta-function self eta)

)

(desired-height (height-function self eta)

)

(desired-body-plane (list (list (* (/ a m) (sin desired-eta)

)

(* (/ b m) (sin desired-eta)

)

(cos desired-eta)) 0.0))
(desired-body-plane-in-body (plane-transform desired-body-plane H)

)

(unit-normal-body-plane (first desired-body-plane-in-body)

)

(al (first unit-normal-body-plane)

)

(bl (second unit-normal-body-plane)

)

(cl (third unit-normal-body-plane)

)

(ml (sqrt (+ (* al al) (* bl bl)))

)

(k (if (= ml 0)

(list 0)

(list (/ (- bl) ml) (/ al ml) 0)))
(gamma (arc-cos cl))

)

(list k gamma desired-height))

)

defmethod (regulate terrain-regulator)
(estimated-support-plane H)

(let ((k-gamma (get-k-gamma-by-slope self estimated-support-plane H))

)

(do-terrain-regulation self k-gamma))

)

defmethod (restore terrain-regulator)

(setf body-rotate-rate-x old-body-rotate-rate-x)
(setf body-rotate-rate-y old-body-rotate-rate-y)
(setf body-trans-rate-z old-body-trans-rate-z)
(list body-rotate-rate-x body-rotate-rate-y body-trans-rate-z)

)

defmethod (save terrain-regulator)

(setf old-body-rotate-rate-x body-rotate-rate-x)

terrain-regulator. lisp Wed Mar 30 15:28:15 1988

(setf old-body-rotate-rate-y body-rotate-rate-y)
(setf old-body-trans-rate-z body-trans-rate-z)
)

Ian. lisp Wed Mar 30 15:28:17 1988 1

;
* Mode: LISP; Syntax: Common- lisp; Package: LEG -*

tkm-calculator flavor definition

lef flavor tkm-calculator (working-volume owner)

, : initable-instance-variables)

iefmethod (init tkm-calc
(leg-name)

(cond ((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

((equal leg-name
(setf working-vo

' ((((0 1

(((0 1

ulator)

'legl)
lume
) 3.316) 1(1 0) -8 .0832) [(0 9397 3420) -2 .569))

) 5.7313) (d 0) -3 .4167) ,(0 9397 -0 .3420) -2 569))

'leg2)
lume
) 3.316) [(1 0) -8 .0832) ,(0 9397 .3420) 2 569))

) 5.7313) (d 0) -3 .4167) (0 9397 -0 3420) 2 .569))
'leg3)
lume
) 3.316) (1 0) -2 .2915) [(0 9397 .3420) -2 .569))
) 5.7313) (1 0) 2 .2915) ,(0 9397 -0 .3420) -2 .569))

'leg4)
lume
) 3.316) (1 0) -2 .2915) (0 9397 3420) 2 .569))

) 5.7313) (1 0) 2 2915) (0 9397 -0 3420) 2 .569))

'leg5)
lume
) 3.316) (1 0) 3 .3332) (0 9397 3420) -2 .569))

) 5.7313) (1 0) 7 8332) (0 9397 -0 .3420) -2 .569))

'leg6)
lume
) 3.316) (1 0) 3 3332) (0 9397 3420) 2 .569))

) 5.7313) (1 0) 7 8332) (0 0. 9397 -0 3420) 2 569))

)

)

defmethod (find-tkm tkm-calculator)
(a-foothold body-trans-rate body-rotate-rate)

a-foothold is based on body coordinate
returns tkm
(let* ((leg-vel-rpt-body

(get -leg-velocity
a-foothold body-trans-rate body-rotate-rate))

)

(get-tkm a-foothold leg-vel-rpt-body working-volume))

)

))

)))

))

)))

)))

)))

defun get-distance (planes velocity leg-position)
global function : plane-distance
before start, make one plane list
(do ((planes (append (first planes) (second planes)) (cdr planes)

)

(a-tkm nil)
(min-tkm 10000)

)

((null planes) min-tkm)

tkm.lisp Wed Mar 30 15:28:17 1988 2

(setf a-tkm (plane-distance (car planes) velocity leg-position)

)

(if a-tkm
(if (and (> a-tkm 0) (> min-tkm a-tkm)

)

(setf min-tkm a-tkm)))))

(defun get-leg-velocity (pos-rpt-body body-trans-rate body-rotate-rate)
; returns leg-velocity-wrt-body
;

= -
(body-trans-rate + body-rotate-rate X pos-rpt-body)

(vectsub '(0 0)

(vectadd body-trans-rate
(crossprod body-rotate-rate pos-rpt-body)))

)

(defun get-tkm (leg-pos-rpt-body velocity working-volume)
; global function : magnitude
; outside w.v returns nil. If speed is near 0, then returns 1000.0.

(if (in-side-volume leg-pos-rpt-body working-volume)
(let ((speed (magnitude velocity))

)

(if (< speed 1/1000)
1000.0
(/ (get-distance working-volume velocity leg-pos-rpt-body) speed))

)

nil))

(defun in-side-volume (position planes)
; planes ((up front left) (back right bottom)

)

(let* ((positive-planes (first planes)

)

(negative-planes (second planes)

)

(inside-flag T)

)

(dolist (a-plane positive-planes)
(if (>= (plane-normal-distance a-plane position) 0)

(setf inside-flag nil))

)

(dolist (a-plane negative-planes)
(if (<= (plane-normal-distance a-plane position) 0)

(setf inside-flag nil))

)

inside-flag)

)

Lsion.lisp Wed Mar 30 15:28:18 1988 1

; -*- Mode: LISP; Syntax: Common- lisp; Package: VISION -*

iefflavor vision-system (owner)

: initable-instance-variables)

iefmethod (init vision-system)

)

iefmethod (scanning vision-system)

)

iefmethod (permitted-cell vision-system)
(t-cell)

(permitted-cell graph-terrain t-cell))

efmethod (terrain-point vision-system)
(t-cell)

(terrain-point graph-terrain t-cell)

)

thic:le. data Wed Mar 30

1 3

(
6.625 0.0 3.0)

(
6.625 0.0 1.08)

(
6.625 -2.0 1.08)

[

-6.625 -2.0 1.08)
-6.625 2.0 1.08)
6.625 2.0 1.08)
6.625 0.9 -3.1)
6.625 -0.9 -3.1)

-6.625 -0.9 -3.1)
-6.625 0.9 -3.1)

1 0.0 0.0 0.0)
2 0.0 0.0 0.0)
3 0.0 0.0 0.0)
4 0.0 0.0 0.0)

5 0.0 0.0 0.0)
6 0.0 0.0 0.0)
7 0.0 0.0 0.0)
8 0.0 0.0 0.0)
9 0.0 0.0 0.0)

0.0 0.0 0.0)
1 0.0 0.0 0.0)
2 0.0 0.0 0.0)
3 0.0 0.0 0.0)
4 0.0 0.0 0.0)
5 0.0 0.0 0.0)
6 0.0 0.0 0.0)
7 0.0 0.0 0.0)
8 0.0 0.0 0.0)
1 2)

3 4 5 6 3)

6 7)

5 10)

4 9)

3 8)

8 7 10 9 8)

11 12 13)
14 15 16)
17 18 19)

20 21 22)
23 24 25)
26 27 28)

Distribution List

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943

Center for Naval Analyses 1

4401 Ford Anenue
Alexandria, Virginia 22302-0268

Chief of Naval Operations 1

Director, Information Systems (OP-945)

Navy Department
Washington, D.C. 20350-2000

Director of Research Administration 1

Code 012

Naval Postgraduate School

Monterey, CA 93943

Department Chairman, Code 62 1

Department of Electronics and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943

Professor Robert B. McGhee, Code 52Mz. 12

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Professor Neil C. Rowe, Code 52Rp 1

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Professor Michael J. Zyda, Code 52Zk 1

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Professor Roberto Cristi, Code 62Cx 1

Department of Electronic and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943

Department Chairman, Code 69

Department of Mechanical Engineering

Naval Postgraduate School

Monterey, CA 93943

Professor D. L. Smith, Code 69Sm
Department of Mechanical Engineering

Naval Postgraduate School

Monterey, CA 93943

Major Robert Richbourg
USMA
Office of Artificial Intelligence Analysis and Evaluation

Attention: MADN-B
West Point, New York 10996

Professor Kenneth J. Waldron
Department of Mechanical Engineering

Ohio State University

206 West 18th Avenue
Columbus, Ohio 43210

Professor C. A. Klein

Department of Electrical Engineering

Ohio State University

2015 Neil Avenue
Columbus, Ohio 43210

Professor D. E. Dain
Department of Electrical Engineering

Ohio State University

2015 Neil Avenue
Columbus, Ohio 43210

Doctor William Isler

DARPA/ISTO
1400 Wilson Boulevard

Arlington, Virginia 22209

Doctor Robert Rosenfeld

DARPA/ISTO
1400 Wilson Boulevard

Arlington, Virginia 22209

Professor A. J. Healey

Department of Mechanical Engineering

Naval Postgraduate School

Monterey, CA 93943

DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01070231 9

